• 제목/요약/키워드: Wet process

검색결과 1,261건 처리시간 0.031초

Effect of Aging Process and Time on Physicochemical and Sensory Evaluation of Raw Beef Top Round and Shank Muscles Using an Electronic Tongue

  • Kim, Ji-Han;Kim, Dong-Han;Ji, Da-som;Lee, Hyun-Jin;Yoon, Dong-Kyu;Lee, Chi-Ho
    • 한국축산식품학회지
    • /
    • 제37권6호
    • /
    • pp.823-832
    • /
    • 2017
  • The objective of this study was to determine the effect of aging method (dry or wet) and time (20 d or 40 d) on physical, chemical, and sensory properties of two different muscles (top round and shank) from steers (n=12) using an electronic tongue (ET). Moisture content was not affected by muscle types and aging method (p>0.05). Shear force of dry aged beef was significantly decreased compared to that of wet aged beef. Most fatty acids of dry aged beef were significantly lower than those of wet aged beef. Dry aged shank muscles had more abundant free amino acids than top round muscles. Dry-aging process enhanced tastes such as umami and saltiness compared to wet-aging process according to ET results. Dry-aging process could enhance the instrumental tenderness and umami taste of beef. In addition, the taste of shank muscle was more affected by dry-aging process than that of round muscle.

HF 습식 식각을 이용한 극자외선 노광 기술용 SiNx (Manufacturing SiNx Extreme Ultraviolet Pellicle with HF Wet Etching Process)

  • 김지은;김정환;홍성철;조한구;안진호
    • 반도체디스플레이기술학회지
    • /
    • 제14권3호
    • /
    • pp.7-11
    • /
    • 2015
  • In order to protect the patterned mask from contamination during lithography process, pellicle has become a critical component for Extreme Ultraviolet (EUV) lithography technology. According to EUV pellicle requirements, the pellicle should have high EUV transmittance and robust mechanical property. In this study, silicon nitride, which is well-known for its remarkable mechanical property, was used as a pellicle membrane material to achieve high EUV transmittance. Since long silicon wet etching process time aggravates notching effect causing stress concentration on the edge or corner of etched structure, the remaining membrane is prone to fracture at the end of etch process. To overcome this notching effect and attain high transmittance, we began preparing a rather thick (200 nm) $SiN_x$ membrane which can be stably manufactured and was thinned into 43 nm thickness with HF wet etching process. The measured EUV transmittance shows similar values to the simulated result. Therefore, the result shows possibilities of HF thinning processes for $SiN_x$ EUV pellicle fabrication.

LED용 Si 기판의 저비용, 고생산성 실리콘 관통 비아 식각 공정 (Developing Low Cost, High Throughput Si Through Via Etching for LED Substrate)

  • 구영모;김구성;김사라은경
    • 마이크로전자및패키징학회지
    • /
    • 제19권4호
    • /
    • pp.19-23
    • /
    • 2012
  • 최근 발광다이오드(LED)의 출력 성능을 높이고, 전력 소비를 줄이기 위해 LED 패키지 분야에서 실리콘 기판 연구가 집중되고 있다. 본 연구에서는 공정 비용이 낮고 생산성이 높은 습식 식각을 이용하여 실리콘 기판의 실리콘 관통 비아 식각 공정을 살펴보았다. KOH를 이용한 양면 습식 식각 공정과 습식 식각과 건식 식각을 병행한 두 가지 공정 방법으로 실리콘 관통 비아를 제작하였고, 식각된 실리콘 관통 비아에 Cu 전극과 배선은 전기도금으로 증착하였다. Cu 전극을 연결하는 배선의 전기저항은 약 $5.5{\Omega}$ 정도로 낮게 나타났고, 실리콘 기판의 열 저항은 4 K/W으로 AlN 세라믹 기판과 비슷한 결과를 보였다.

Unsteady Wet Steam Flow Measurements in a Low-Pressure Test Steam Turbine

  • Duan, Chongfei;Ishibashi, Koji;Senoo, Shigeki;Bosdas, Ilias;Mansour, Michel;Kalfas, Anestis I.;Abhari, Reza S.
    • International Journal of Fluid Machinery and Systems
    • /
    • 제9권1호
    • /
    • pp.85-94
    • /
    • 2016
  • An experimental study is conducted for unsteady wet steam flow in a four-stage low-pressure test steam turbine. The measurements are carried out at outlets of the last two stages by using a newly developed fast response aerodynamic probe. This FRAP-HTH probe (Fast Response Aerodynamic Probe - High Temperature Heated) has a miniature high-power cartridge heater with an active control system to heat the probe tip, allowing it to be applied to wet steam measurements. The phase-locked average results obtained with a sampling frequency of 200 kHz clarify the flow characteristics, such as the blade wakes and secondary vortexes, downstream from the individual rotational blades in the wet steam environment.

습식법으로 제조된 BN 중간층을 가진 Cf/SiC 복합재의 제조 및 물성 평가 (Fabrication and Characterization of Cf/SiC Composite with BN Interphase Coated by Wet Chemical Process)

  • 구준모;김경호;한윤수
    • 한국표면공학회지
    • /
    • 제50권6호
    • /
    • pp.523-530
    • /
    • 2017
  • In this study, we developed the h-BN interphase for ceramic matrix composites (CMCs) through a wet chemical coating method, which has excellent price competitiveness and is a simple process as a departure from the existing high cost chemical vapor deposition method. The optimum condition for nitriding an h-BN interphase using boric acid and urea as precursors were derived, and the h-BN interphase coating through a wet method on a carbon preform of 2.5 D was conducted to apply the optimum conditions to the CMCs. In order to control the coating property via the wet coating method, four parameters were investigated such as dipping time of the specimen in the precursor solution, the ratio of boric acid and urea in the precursor, the concentration of solution where the precursor was dissolved, and the cycle of dipping and dry process. The CMCs was fabricated through polymer impregnation and pyrolysis (PIP) processes and a three-point flexural strength test was conducted to verify the role of the coated h-BN interphase.

DHF를 적용한 웨이퍼의 층간 절연막 평탄화에 관한 연구 (A Study on ILD(Interlayer Dielectric) Planarization of Wafer by DHF)

  • 김도윤;김형재;정해도;이은상
    • 한국정밀공학회지
    • /
    • 제19권5호
    • /
    • pp.149-158
    • /
    • 2002
  • Recently, the minimum line width shows a tendency to decrease and the multi-level increases in semiconductor. Therefore, a planarization technique is needed and chemical mechanical polishing(CMP) is considered as one of the most suitable process. CMP accomplishes a high polishing performance and a global planarization of high quality. However there are several defects in CMF, such as micro-scratches, abrasive contaminations and non-uniformity of polished wafer edges. Wet etching process including spin-etching can eliminate the defects of CMP. It uses abrasive-free chemical solution instead of slurry. On this study, ILD(Interlayer-Dielectric) was removed by CMP and wet etching process using DHF(Diluted HF) in order to investigate the possibility of planrization by wet etching mechanism. In the thin film wafer, the results were evaluated from the viewpoint of material removal rate(MRR) and within wafer non-uniformity(WIWNU). And the pattern step heights were also compared for the purpose of planarity characterization of the patterned wafer. Moreover, Chemical polishing process which is the wet etching process with mechanical energy was introduced and evaluated for examining the characteristics of planarization.

반도체 제조공정 미세먼지-질소산화물 동시 저감을 위한 오존 고속산화공정 최적화 연구 (Optimization of an Ozone-based Advanced Oxidation Process for the Simultaneous Removal of Particulate Matters and Nitrogen Oxides in a Semiconductor Fabrication Process)

  • 엄성현;이승준;고은하;홍기훈;황상연
    • 공업화학
    • /
    • 제32권6호
    • /
    • pp.659-663
    • /
    • 2021
  • 반도체 제조공정에서 발생하는 미세먼지와 질소산화물 동시처리를 위하여 오존산화, 습식중화 및 습식전기집진 기술들을 직접화한 10 CMM급 복합오염물질 제거시스템을 개발하였으며, NOx 제거효율 증대를 위한 공정변수 제어 및 최적화를 진행하였다. 특히, 전원공급장치를 포함한 습식전기집진장치 핵심부품 안정성 평가를 위해 30일 동안의 장기운전도 병행하였다. 오존산화 기반 DeNOx 공정에서 가장 중요한 운전변수인 O3/NO 비율은 1.5 부근에서 최적화하였으며, 습식중화 공정의 운전변수를 최적화하여 중화반응에 의한 제거효율 기여도를 확인하였다.

전사 방법에 따른 그래핀의 표면 에너지 변화 (Surface Energy of Graphene Transferred by Wet and Dry Transfer Methods)

  • 윤민아;김찬;원세정;정현준;김재현;김광섭
    • Tribology and Lubricants
    • /
    • 제35권1호
    • /
    • pp.9-15
    • /
    • 2019
  • Graphene is a fascinating material for fabricating flexible and transparent devices owing to its thickness and mechanical properties. To utilize graphene as a core material for devices, the transfer process of graphene is an inevitable step. The transfer process can be classified into wet and dry methods depending on the surrounding environment. The adhesion between graphene and a target substrate determines the success or failure of the transfer process. As the surface energy of graphene is an important parameter that provides adhesion, it is useful to estimate the surface energy to understand the mechanisms of the transfer process. However, the exact surface energy of graphene is still disputed because the wetting transparency of graphene depends on the polarity of the liquid and target substrate. Previously reported results use graphene transferred by the wet method. However, there are few reports on the surface energy of graphene transferred by the dry method. In this study, the surface energy of graphene transferred by the wet and dry methods is estimated. Wetting transparency occurs for certain combinations of liquids and substrates. For graphene on a polar substrate, the surface energy decreases by 25 and 35% for the wet and dry transfer methods, respectively. However, the surface energy of graphene on dispersive substrates decreases by ~10% regardless of the transfer method. In conclusion, the surface energy of graphene is $36{\sim}38mJ/m^2$, and differs depending on the transfer method and polarity of the substrate.

고장력강의 습식 수중 아크용접에 대한 냉각율과 기계적 특성에 관한 연구 (Study on Cooling Rates and Mechanical Properties of H.T. Steel Plates in the Underwater Wet arc welding)

  • 김민남
    • 한국해양공학회지
    • /
    • 제2권1호
    • /
    • pp.125-134
    • /
    • 1988
  • The feasibility for improving the cooling rates and mechanical properties of wet welding process is experimentally investigated by using new developed underwater wet electrodes and H.T. steel plates. Main results of this experimental study can be summarized as follows; 1) By shielding around weld arc surrounding, the cooling rates resulting from wet welds with developed electrodes on TMCP steel plates can be lower than of non-shielded wet welds. 2)A high quality of mechanical properties of wet welds on TMCP steel plates can be obtained with shielded weld arc surrounding.

  • PDF

2.22-inch qVGA a-Si TFT-LCD Using a 2.5 um Fine-Patterning Technology by Wet Etch Process

  • Lee, Jae-Bok;Park, Sun;Heo, Seong-Kweon;You, Chun-Ki;Min, Hoon-Kee;Kim, Chi-Woo
    • Journal of Information Display
    • /
    • 제7권3호
    • /
    • pp.1-4
    • /
    • 2006
  • 2.22-inch qVGA $(240{\times}320)$ amorphous silicon thin film transistor liquid active matrix crystal display (a-Si TFT-AMLCD) panel has been successfully demonstrated employing a 2.5 um fine-patterning technology by a wet etch process. Higher resolution 2.22-inch qVGA LCD panel with an aperture ratio of 58% can be fabricated as the 2.5 um fine pattern formation technique is integrated with high thermal photo-resist (PR) development. In addition, a novel concept of unique a-Si TFT process architecture, which is advantageous in terms of reliability, was proposed in the fabrication of 2.22-inch qVGA LCD panel. Overall results show that the 2.5 um fine-patterning is a considerably significant technology to obtain higher aperture ratio for higher resolution a-Si TFT-LCD panel realization.