• Title/Summary/Keyword: Wet chemical etching

Search Result 143, Processing Time 0.022 seconds

A Study on ILD(Interlayer Dielectric) Planarization of Wafer by DHF (DHF를 적용한 웨이퍼의 층간 절연막 평탄화에 관한 연구)

  • Kim, Do-Youne;Kim, Hyoung-Jae;Jeong, Hae-Do;Lee, Eun-Sang
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.19 no.5
    • /
    • pp.149-158
    • /
    • 2002
  • Recently, the minimum line width shows a tendency to decrease and the multi-level increases in semiconductor. Therefore, a planarization technique is needed and chemical mechanical polishing(CMP) is considered as one of the most suitable process. CMP accomplishes a high polishing performance and a global planarization of high quality. However there are several defects in CMF, such as micro-scratches, abrasive contaminations and non-uniformity of polished wafer edges. Wet etching process including spin-etching can eliminate the defects of CMP. It uses abrasive-free chemical solution instead of slurry. On this study, ILD(Interlayer-Dielectric) was removed by CMP and wet etching process using DHF(Diluted HF) in order to investigate the possibility of planrization by wet etching mechanism. In the thin film wafer, the results were evaluated from the viewpoint of material removal rate(MRR) and within wafer non-uniformity(WIWNU). And the pattern step heights were also compared for the purpose of planarity characterization of the patterned wafer. Moreover, Chemical polishing process which is the wet etching process with mechanical energy was introduced and evaluated for examining the characteristics of planarization.

A study on wet etching for silicon membrane construction formation (실리콘 Membrane 구조 형성을 위한 Wet Etching에 관한 연구)

  • 김동수;정원채
    • Proceedings of the IEEK Conference
    • /
    • 2001.06b
    • /
    • pp.237-240
    • /
    • 2001
  • In this paper, we have presented processing technique about wet etching for silicon membrane construction formation. In order to make selective etching of backside silicon wafer, we used Si$_3$N$_4$ layer by PECVD(Plasma Enhanced Chemical Vapor Deposition). We have measured the surface thickness in backside silicon wafer after anisortropic wet etching with KOH:distilled water solutions. Through this experiment, we acquired the etching rate for 1.29${\mu}{\textrm}{m}$/min. The average rough of Si-membrane frontside and backside was 0.26${\mu}{\textrm}{m}$, 0.90${\mu}{\textrm}{m}$, respectively.

  • PDF

Fabrication of a (100) Silicon Master Using Anisotropic Wet Etching for Embossing

  • Jung, Yu-Min;Kim, Yeong-Cheol
    • Journal of the Korean Ceramic Society
    • /
    • v.42 no.10 s.281
    • /
    • pp.645-648
    • /
    • 2005
  • To fabricate a (100) silicon hard master, we used anisotropic wet etching for the embossing. The etching chemical for the sili­con wafer was a TMAH 25$\%$ solution. The anisotropic wet etching produces a smooth sidewall surface inclined at 54.7°, and the surface roughness of the fabricated master is about 1 nm. After spin coating an organic-inorganic sol-gel hybrid resin on a silicon substrate, we used the fabricated master to form patterns on the silicon substrate. Thus, we successfully obtained patterns via the hot embossing technique with the (100) silicon hard master. Moreover, by using a single hydrophobic surface treatment of the master, we succeeded in achieving uniform surface roughness of the embossed patterns for more than ten embossments.

Effects of Ingredients of Wet Etchant on Glass Slimming Process (유리기판 박막화를 위한 습식공정에서 식각액 성분의 영향)

  • Shin, Young Sik;Lee, Won Gyu
    • Korean Chemical Engineering Research
    • /
    • v.58 no.3
    • /
    • pp.474-479
    • /
    • 2020
  • The etching solution for slimming of glass substrates was manufactured and HF was used as the main ingredient of wet etching solutions. Various types of strong acids such as HCl, HNO3, H2SO4, amino acids and carboxylic acids such as citric acid, and etched solutions, respectively, were used to measure the etching rates and changes in surface shape of the glass. Regardless of the type of strong acids, the etching rate of the glass increased linearly as the added amount increased, and the sludge removal effect of the glass surface was also shown. The etching solution containing HCl showed more efficient results than other strong acids in the etching rate and the effect of removing sludge. The addition of carboxylic acid did not significantly affect the variation of etching rate, but had the effect of removing sludge. However, if amino acids were added, changes in etching rate and sludge removal were not significant.

The Effect of Wet Etching Time on the Surface Roughness and Electrical and Optical Properties of ZnO, and Al-doped ZnO Films (ZnO와 Al-doped ZnO 박막의 표면 형상과 전기·광학적 특성에 미치는 Wet Etching 시간의 영향)

  • Kim, Min-Sung
    • Journal of the Korean Institute of Electrical and Electronic Material Engineers
    • /
    • v.26 no.3
    • /
    • pp.194-197
    • /
    • 2013
  • We investigated the effect of etching time on the surface roughness, and electrical and optical properties of ZnO and 2 wt% Al-doped ZnO (AZO) films. The ZnO and AZO films were deposited on glass substrates by RF magnetron sputtering technique. The etching experiment was carried out using a solution of 5% HCl at room temperature. The surface roughness was characterized by Atomic Force Microscopy. The electrical property was measured by Hall measurement system and 4-point probe. The optical property was characterized by UV-vis spectroscopy. After the wet chemical etching, the surface textures were obtained on the surface of the ZnO and AZO films. With the increase of etching time, the surface roughness (RMS) of the films increased and the transmittance of the films was observed to decrease. For the AZO film, a low resistivity of $1.0{\times}10^{-3}\;{\Omega}{\cdot}cm$ was achieved even after the etching.

Study on Wet chemical Etching Characterization of Zinc Oxide Film for Transparency Conductive Oxide Application (투명 전도성 산화물 전극으로의 응용을 위한 산화아연(ZnO) 코팅막의 습식 식각 특성연구)

  • Yoo, Dong-Geun;Kim, Myoung-Hwa;Jeong, Seong-Hun;Boo, Jin-Hyo
    • Journal of the Korean Vacuum Society
    • /
    • v.17 no.1
    • /
    • pp.73-79
    • /
    • 2008
  • In order to apply for transparent conductive oxide(TCO), we deposited ZnO thin films on the glass at room temperature by RF magnetron sputtering method. Deposition conditions for high transmittance and low resistivity were optimized in our previous studies. Under the deposition condition with the RF power of 200 W, target to substrate distance of 30 mm and working pressure of 5 mTorr, highly conductive($7.4{\times}10^{-3}{\Omega}cm$) and transparent(over 85%) ZnO films were prepared. Highly oriented ZnO film in the [002] direction were obtained with specifically designed ZnO targets. Systematic study on dependence of deposition parameters on electrical and optical properties of the as-grown ZnO films were mainly investigated in this work. And for application tests using these films as transparent conductive oxide anodes, wet chemical etching behaviors of ZnO films were also investigated using various chemicals. Wet-chemical etching behavior of ZnO films were investigated using various acid solutions. The concentrations of these different acid solutions were controlled to study the etching shapes and etching rate. ZnO films were anisotropically etched at various concentrations and wet etching led to crater-like surface structure. Also we firstly found that the etching rate and etching shapes of ZnO films strongly depended on the etchant concentrations (i.e. pH) and the etching rate is exponentially decreased with increasing pH values regardless of the acid etchants.

Photo-assisted GaN wet-chemical Etching using KOH based solution (KOH계열 수용액을 이용한 GaN 박막의 photo-assisted 식각 특성)

  • Lee, Hyoung-Jin;Song, Hong-Ju;Choi, Hong-Goo;Ha, Min-Woo;Roh, Cheong-Hyun;Lee, Jun-Ho;Park, Jung-Ho;Hahn, Cheol-Koo
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 2010.06a
    • /
    • pp.339-339
    • /
    • 2010
  • Photo-assisted wet chemical etching of GaN thin film was studied using KOH based solutions. A $2{\mu}m-2{\mu}m$ titanium line-and-space pattern was used as a etching mask. It is found that the etching characteristics of the GaN thin film is strongly dependent on the pattern direction by unisotropic property of KOH based solution. When the pattern was aligned to the [$11\bar{2}0$] directions, ($10\bar{1}n$)-facet is revealed constructing V-shaped sidewalls.

  • PDF

A Study on the Characteristics of the Functional Groups of the Alkanethiol Molecules in UV Laser Photochemical Patterning and Wet Etching Process (UV Laser를 이용한 광화학적 패터닝과 습식에칭에 따른 알칸티올 분자 작용기의 특성 연구)

  • Huh, Kab-Soo;Chang, Won-Seok
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.24 no.5
    • /
    • pp.104-109
    • /
    • 2007
  • Photochemical patterning of self-assembled mono layers (SAMs) has been performed by diode pumped solid state (DPSS) 3rd harmonic Nd:$YVO_4$ laser with wavelength of 355 nm. SAMs patternings of parallel lines have subsequently been used either to generate compositional chemical patterns or fabricate microstructures by a wet etching. This paper describes a selective etching process with patterned SAMs of alkanetiolate molecules on the surface of gold. SAMs formed by the adsorption of alkanethiols onto gold substrate employs as very thin photoresists. In this paper, the influence of the interaction between the functional group of SAMs and the etching solution is studied with optimal laser irradiation conditions. The results show that hydrophobic functional groups of SAMs are more effective for selective chemical etching than the hydrophilic ones.

Laser Induced Wet Etching of Fused Silica according to Etchant (식각액에 따른 용융실리카의 레이저 습식 식각가공)

  • Lee J. H.;Lee J. K.;Jeon B. H.
    • Proceedings of the Korean Society for Technology of Plasticity Conference
    • /
    • 2004.05a
    • /
    • pp.245-249
    • /
    • 2004
  • Transparent materials such as fused silica are important materials in optical and optoelectronics field because of its outstanding properties, such as transparency in a wide wavelength range, strong damage resistance for laser irradiation, and high thermal and chemical stability. However, these properties make it difficult to micromachine silica in micro-sized quantities. In this study, we fabricated a micro patterns on the surface of fused silica plate using laser induced wet etching. KrF excimer laser was used as a light source. There were no burrs and micro cracks on the etched surface of fused silica and the flatness of the etched surface was fairly good. We investigated the influence of etchant upon the etch rate and quality in laser induced wet etching. Pyrene-acetone, toluene, and pyrene-toluene solution were used as etchant. In the side of etch rate, toluene and pyrene-toluene solution were better than pyrene-acetone solution.

  • PDF