• Title/Summary/Keyword: Water sound

Search Result 583, Processing Time 0.025 seconds

Bottom Loss Variation of Low-Frequency Sound Wave in the Yellow Sea (황해에서 저주파 음파의 해저손실 변동)

  • Kim, Bong-Chae
    • Ocean and Polar Research
    • /
    • v.29 no.2
    • /
    • pp.113-121
    • /
    • 2007
  • The sound wave in the sea propagates under the effect of water depth, sound speed structure, sea surface roughness, bottom roughness, and acoustic properties of bottom sediment. In shallow water, the bottom sediments are distributed very variously with place and the sound speed structure varying with time and space. In order to investigate the seasonal propagation characteristics of low-frequency sound wave in the Yellow Sea, propagation experiments were conducted along a track in the middle part of the Yellow Sea in spring, summer, and autumn. In this paper we consider seasonal variations of the sound speed profile and propagation loss based on the measurement results. Also we quantitatively investigate variation of bottom loss by dividing the propagation loss into three components: spreading loss, absorption loss, and bottom loss. As a result, the propagation losses measured in summer were larger than the losses in spring and autumn, and the propagation losses measured in autumn were smaller than the losses in spring. The spreading loss and the absorption loss did not show seasonal variations, but the bottom loss showed seasonal variations. So it was thought that the seasonal variation of the propagation loss was due to the seasonal change of the bottom loss and the seasonal variation of the bottom loss was due to the change of the sound speed profile by season.

The Selection of the Scenery and Sound as the Environmental Friendly Elements (친환경 요소로서의 경관과 그에 어울리는 소리의 선택)

  • Kim, Hang;Jeon, Ji-Hyeon;Jang, Gil-Soo;Kook, Chan;Shin, Yong-Gyu
    • Transactions of the Korean Society for Noise and Vibration Engineering
    • /
    • v.16 no.4 s.109
    • /
    • pp.414-419
    • /
    • 2006
  • In this research, the test how the evaluation of the spacial image influenced by the environmental friendly elements included in the visual information, and how the selection of the sound changed depending on the characteristics of spacial image were carried out by the 40 subjects. Vast tracts of green land and the waterfront were highly preferred and impressive than the other spaces. The green music, signal with water sound and bird chirping sound were highly scored. In the frequency characteristics of the factors, the first factor was artificial sound (high at the low frequency band), the second was natural sound(uniform at all frequency band) and the third was water sound (high at the middle and high frequency band over 500 Hz) . This shows that the proposal of the sound which has the frequency characteristics fit to the spacial image should be selected for the soundscape of the target space.

Estimation of a transition point of sound propagation condition using transmission loss data measured in SAVEX15 (SAVEX15 실험 해역에서 측정된 전달손실 자료를 이용한 음파 전달 조건의 변환점 추정)

  • Kwon, Hyuckjong;Choi, Jee Woong;Kim, Byoung-Nam
    • The Journal of the Acoustical Society of Korea
    • /
    • v.37 no.1
    • /
    • pp.1-11
    • /
    • 2018
  • Sound propagation in shallow water changes from spherical spreading to cylindrical spreading, depending on boundary conditions, and this point is defined as a transition point of the sound propagation condition. Theoretically, the transition point can be estimated using the transmission loss as a function of source-receiver range. In this paper, the transmission loss curve in a Pekeris waveguide is predicted using a parabolic-equation based acoustic propagation model and using this transmission loss curve, the range from the source of the transition point is estimated, which is compared to the critical distance calculated using the sound speed ratio of water to sediment. In addition, the effects of the sound speed profile and source depth change on the transition point are investigated. Finally, the transition point is estimated using the transmission loss data measured during the period of the SAVEX15 (Shallow Water Acoustic Variability EXperiment 2015) conducted 65 km southwest of Jeju Island in May 2015, and it is compared to the ocean environmental parameters to understand the properties of sound propagation in the experimental area.

The Resonance Frequency of Sound Channel in Shallow Water a Thermocline

  • Yan, Jin;Kim, Bong-Chae
    • The Journal of the Acoustical Society of Korea
    • /
    • v.15 no.4E
    • /
    • pp.65-71
    • /
    • 1996
  • In shallow water with a thermocline, the characteristics of sound propagation strongly depend on the signal frequency. When only one of the source and the receiver is above the themocline, it is known that the intensity of the received signal changes largely and almost periodically as the signal frequency varies. This is the so-called channel resonance. By using the ray-mode approach, the formula relating the resonance frequency and the sound speed profile is obtained, and the resonance phenomenon is analyzed. Also this analysis is verified by numerical calculation.

  • PDF

Soundscape for Gwang-Ju Riverside (광주천변의 사운드스케이프 현황)

  • Song, Hyuk;Park, Hyeun-Ku;Song, Min-Jeoung;Lee, Tae-Kang;Kim, Hang
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • 2005.05a
    • /
    • pp.603-606
    • /
    • 2005
  • This study is to make good acoustic environment around Gwang-ju riverside and performed survey and measurement of soundscape. The survey was focused on the types of sound producing. The results of measurement and analysis are as follows: 1) The types of sound at reverside were twenty and the Leq(equivalent noise level) was ranging from 50 dB(A) to 76 dB(A). The dominant sound was road traffic noise. 2) In the upperstream and the downstream, the sound of wind, bird and water was observed. 3) In the inner city, the water sound was produced by the difference of the height of the weir to mask the road traffic noise.

  • PDF

Assessment of Acoustic Iterative Inverse Method for Bubble Sizing to Experimental Data

  • Choi, Bok-Kyoung;Kim, Bong-Chae;Kim, Byoung-Nam;Yoon, Suk-Wang
    • Ocean Science Journal
    • /
    • v.41 no.4
    • /
    • pp.195-199
    • /
    • 2006
  • Comparative study was carried out for an acoustic iterative inverse method to estimate bubble size distributions in water. Conventional bubble sizing methods consider only sound attenuation for sizing. Choi and Yoon [IEEE, 26(1), 125-130 (2001)] reported an acoustic iterative inverse method, which extracts the sound speed component from the measured sound attenuation. It can more accurately estimate the bubble size distributions in water than do the conventional methods. The estimation results of acoustic iterative inverse method were compared with other experimental data. The experimental data show good agreement with the estimation from the acoustic iterative inverse method. This iterative technique can be utilized for bubble sizing in the ocean.

A Response of the Shoal of Chub Mackerel ( Scomber Japonics , HOVTTYUN ) to Underwater Sound (수중음에 대한 고등어 어군의 반응)

  • 서두옥
    • Journal of the Korean Society of Fisheries and Ocean Technology
    • /
    • v.25 no.1
    • /
    • pp.12-17
    • /
    • 1989
  • A field experiment was carried out of confirm the effect of underwater sound on the luring of fish school of chub mackerel in the coast of Idousyo Island. Underwater sound that was made use of luring of fish school was pure sound and interval pure sound which the frequencies of the sound were 150Hz and 200Hz, respectively. The results of the observation of hooking and recording paper of fish finder indicate that the effect of emitting sound at 20m in the depth of water was remarkable for the luring of fish school of chub mackerel. The vertical pure sound pressure level at 150Hz and 200Hz of the water layer that was lured the fish school of chub mackerel were 140.1dB and 146.dB at 30m, 121.0dB and 126.6dB at 70m and 141.9dB and 120.5dB at 120m in the depth of water, respectively.

  • PDF

Test and Evaluation for Time Delay Function of Point Detonating Fuze by Underwater Sound Analysis (수중음향 분석을 통한 충격신관 지연기능 시험평가)

  • Na, Taeheum;Jang, Yohan;Jeong, Jihoon;Kim, Kwanju
    • Journal of the Korea Institute of Military Science and Technology
    • /
    • v.20 no.2
    • /
    • pp.217-224
    • /
    • 2017
  • This study proposes an evaluation method for time delay function(TDF) of Point Detonation(PD) fuse using underwater explosion and water entry phenomena. Until now, nothing but the naked eyes of an observer or video images have been used to determine whether the TDF of PD fuze is operated or not. The observer has verified the performance of TDF by analysing the shape of the plume formed by underwater explosion. However, it is very difficult to evaluate the TDF of PD fuse by these conventional methods. In order to overcome this issue, we propose a method using underwater sound signal emitted from the underwater explosion of high explosive charge. The result shows that the measured sound signal is in accord with the physical phenomena of water entry of warhead as well as underwater explosion. Also, from the hypothesis test of bubble period, difference on underwater sound analysis between dud event and delay one is proved.

An Analysis of the Sound Propagation between Rooms with Different Mediums (서로 다른 매질을 갖는 격실사이의 음파전달해석)

  • Kim, Hyun-Sil;Kim, Jae-Seung;Lee, Seong-Hyun;Seo, Yun-Ho
    • The Journal of the Acoustical Society of Korea
    • /
    • v.32 no.5
    • /
    • pp.402-407
    • /
    • 2013
  • In this paper, an analysis of sound propagation between two rooms with different mediums is discussed. Statistical energy analysis (SEA) is used to consider energy equilibrium among subsystems associated with the sound pressure levels in two rooms and the vibration level of the wall between rooms. Effect of the sound radiation from the structure-borne noise of the wall on sound pressure level of the receiving room is investigated. For a numerical example, sound propagation between engine room and water tank joined by a steel plate whose size is $8.4{\times}4$ m, is considered. It is found that when the critical frequency of the plate is above the frequency range of interest, the sound pressure level in the water tank is dominated by sound transmission through the plate, while sound radiation from the structure-borne noise of the plate is negligible except low frequency range below 63 Hz.

Research on Environmentally-Sound Erosion Control Works(I) -Environment-oriented erosion control works in Japan- (환경(環境)과 조화한 사방사업(砂防事業)(I) - 일본의 환경보전사방(環境保全砂防) -)

  • Chun, Kun-Woo;Ezaki, Tsugio
    • Journal of Forest and Environmental Science
    • /
    • v.12 no.1
    • /
    • pp.13-25
    • /
    • 1996
  • In recent erosion control works, securing not only the disaster prevention space but the environmental space, harmonized with surrounding environment and abundant with biological resources, are emphasized. Inspired of by the fact that efforts to secure such spaces have been being briskly promoted in Japan since the beginning of 1990s', we compile and analyze the Japanese sources about the "environmentally-sound erosion control works" to contribute to the erosion control works of our country. Specifically, in this report, we deal with the subjects of "establishment of the comfortable river environment" and "environmentally-sound erosion control works" which includes "erosion control dam", "water channel works and revetments", "fish routes" and "water quality conservation works".

  • PDF