DOI QR코드

DOI QR Code

An Analysis of the Sound Propagation between Rooms with Different Mediums

서로 다른 매질을 갖는 격실사이의 음파전달해석

  • 김현실 (한국기계연구원 음향소음팀) ;
  • 김재승 (한국기계연구원 음향소음팀) ;
  • 이성현 (한국기계연구원 음향소음팀) ;
  • 서윤호 (한국기계연구원 음향소음팀)
  • Received : 2012.04.19
  • Accepted : 2013.06.18
  • Published : 2013.09.30

Abstract

In this paper, an analysis of sound propagation between two rooms with different mediums is discussed. Statistical energy analysis (SEA) is used to consider energy equilibrium among subsystems associated with the sound pressure levels in two rooms and the vibration level of the wall between rooms. Effect of the sound radiation from the structure-borne noise of the wall on sound pressure level of the receiving room is investigated. For a numerical example, sound propagation between engine room and water tank joined by a steel plate whose size is $8.4{\times}4$ m, is considered. It is found that when the critical frequency of the plate is above the frequency range of interest, the sound pressure level in the water tank is dominated by sound transmission through the plate, while sound radiation from the structure-borne noise of the plate is negligible except low frequency range below 63 Hz.

본 논문은 인접한 두 격실의 매질이 다를 때 공통 벽을 통한 음파의 전파를 해석한 내용을 다루었다. 통계적 에너지해석법(statistical energy energy)을 사용하여 두 격실의 음향에너지와 벽의 진동에너지간의 에너지 평형을 고려하였으며 소음원실의 음압이 벽을 투과하는 성분 외에 벽의 구조소음으로 인한 음의 방사(radiation)가 수음원실의 음압에 미치는 영향을 검토하였다. 예제로 선박의 엔진실과 물탱크가 크기 $8.4{\times}4$ m인 강판을 사이에 두고 접한 경우를 해석하였다. 강판의 임계주파수(critical frequency)가 관심주파수대역보다 큰 경우 63 Hz이하의 저주파수대역을 제외하고 음파의 전달은 강판을 투과하는 성분에 의해 주로 결정되며 강판의 구조소음에 기인한 방사소음은 무시할 정도로 기여도가 작음을 확인하였다.

Keywords

References

  1. KS F 2808:2011, Laboratory Measurement of Sound Insulation of Building Elements.
  2. ISO 10140-2:2010, Acoustics - Laboratory Measurement of Sound Insulation of Building Elements, Part 2: Measurement of Airborne Sound Insulation.
  3. F. Fahy, Sound and Structural Vibration (Academic Press, San Diego, 1985), pp. 155-157.
  4. M. J. Crocker and A. J. Price, "Sound transmission using statistical energy analysis," J. Sound Vib. 9, 469-486 (1969). https://doi.org/10.1016/0022-460X(69)90185-0
  5. R. H. Lyon and R. G. DeJong, Theory and Application of Statistical Energy Analysis, 2nd Ed. (Butterworth-Heinemann, Boston, 1995), pp. 117-134.
  6. A. J. Price and M. J. Crocker, "Sound transmission through double panels using statistical energy analysis," J. Acoust. Soc. Am. 47, 683-693 (1970). https://doi.org/10.1121/1.1911951
  7. Hyun-Sil Kim, Jae-Seung Kim, Bong-Ki Kim, Sang-Ryul Kim, and Seong-Hyun Lee, "Effect of airborne noise from ship machinery on underwater noise" (in Korean), J. Soc. Naval Archit. Kr. 48, 569-574 (2011). https://doi.org/10.3744/SNAK.2011.48.6.569
  8. I. L. Ver, "Interaction of sound waves with solid structures," in Noise and Vibration Control Engineering, edited by I.L. Ver and L. L. Beranek, 2nd Ed. (John Wiley & Sons Inc., New Jersey, 2006), pp. 117-134.
  9. Hyun-Sil Kim, Jae-Seung Kim, Bong-Ki Kim, Sang-Ryul Kim, and Seong-Hyun Lee, "An analysis of radiation efficiency of the simply supported rectangular plate in water with consideration of low order cross modes" (in Korean), Trans. Kor. Soc. Noise Vib. Eng. 22, 800-807 (2012). https://doi.org/10.5050/KSNVE.2012.22.8.800