• Title/Summary/Keyword: Wagner model

Search Result 41, Processing Time 0.028 seconds

Extended Maxwell-Wagner Polarization Model with Onsager Theory for the Electrorheological Phenomena (전기유변현상 해석을 위하여 Onsager 이론으로 확장한 Maxwell-Wagner 분극 모델)

  • Kim, Young Dae
    • Korean Chemical Engineering Research
    • /
    • v.56 no.5
    • /
    • pp.767-772
    • /
    • 2018
  • Among various mechanisms for ER phenomena, the electrostatic polarization and conduction models were known as the most promising theoretical models. However, many inherited defects have limited their uses for the development of effective ER fluids. To resolve these problems, extended Maxwell-Wagner polarization model with Onsager theory was developed. It was observed that the extended model resolved the problems, suggesting that the extended model can be used for the development of effect ER fluids.

Simulation of Electrorheological Fluids by the Extended Maxwell-Wagner Polarization Model with Onsager Theory (Onsager 이론으로 확장한 Maxwell-Wagner 분극 모델에 의한 전기유변 현상 모사)

  • Kim, Young Dae
    • Korean Chemical Engineering Research
    • /
    • v.58 no.3
    • /
    • pp.480-485
    • /
    • 2020
  • The extended Maxwell-Wagner polarization model is employed to describe the ER behavior of the conducting particle ER suspensions, and solutions to the equation of motion are obtained by dynamic simulation. The simulation results show the nonlinear ER behavior (Δτ∝En, n≈1.5) of the conducting particle ER suspensions. The response point, where shear stress reaches steady-state, is the point where stable break-up and rebuild of the chain-like structure of particles reaches. Also, it shows the minimum of shear stress, which corresponds the start-up of random particle configuration. The shear stress reaches plateau as particle volume fraction increases.

Copper Phthalocyanine Field-effect Transistor Analysis using an Maxwell-wagner Model

  • Lee, Ho-Shik;Yang, Seung-Ho;Park, Yong-Pil;Lim, Eun-Ju;Iwamoto, Mitsumasa
    • Transactions on Electrical and Electronic Materials
    • /
    • v.8 no.3
    • /
    • pp.139-142
    • /
    • 2007
  • Organic field-effect transistor (FET) based on a copper Phthalocyanine (CuPc) material as an active layer and a $SiO_2$ as a gate insulator were fabricated and analyzed. We measured the typical FET characteristics of CuPc in air. The electrical characteristics of the CuPc FET device were analyzed by a Maxwell-Wagner model. The Maxwell-Wagner model employed in analyzing double-layer dielectric system was helpful to explain the C-V and I-V characteristics of the FET device. In order to further clarity the channel formation of the CuPc FET, optical second harmonic generation (SHG) measurement was also employed. Interestingly, SHG modulation was not observed for the CuPc FET. This result indicates that the accumulation of charge from bulk CuPc makes a significant contribution.

Analytical Solutions for the Inelastic Lateral-Torsional Buckling of I-Beams Under Pure Bending via Plate-Beam Theory

  • Zhang, Wenfu;Gardner, Leroy;Wadee, M. Ahmer;Zhang, Minghao
    • International journal of steel structures
    • /
    • v.18 no.4
    • /
    • pp.1440-1463
    • /
    • 2018
  • The Wagner coefficient is a key parameter used to describe the inelastic lateral-torsional buckling (LTB) behaviour of the I-beam, since even for a doubly-symmetric I-section with residual stress, it becomes a monosymmetric I-section due to the characteristics of the non-symmetrical distribution of plastic regions. However, so far no theoretical derivation on the energy equation and Wagner's coefficient have been presented due to the limitation of Vlasov's buckling theory. In order to simplify the nonlinear analysis and calculation, this paper presents a simplified mechanical model and an analytical solution for doubly-symmetric I-beams under pure bending, in which residual stresses and yielding are taken into account. According to the plate-beam theory proposed by the lead author, the energy equation for the inelastic LTB of an I-beam is derived in detail, using only the Euler-Bernoulli beam model and the Kirchhoff-plate model. In this derivation, the concept of the instantaneous shear centre is used and its position can be determined naturally by the condition that the coefficient of the cross-term in the strain energy should be zero; formulae for both the critical moment and the corresponding critical beam length are proposed based upon the analytical buckling equation. An analytical formula of the Wagner coefficient is obtained and the validity of Wagner hypothesis is reconfirmed. Finally, the accuracy of the analytical solution is verified by a FEM solution based upon a bi-modulus model of I-beams. It is found that the critical moments given by the analytical solution almost is identical to those given by Trahair's formulae, and hence the analytical solution can be used as a benchmark to verify the results obtained by other numerical algorithms for inelastic LTB behaviour.

Simulation of Bi-dispersed Electrorheological Fluids of Different Particle Sizes by the Extended Maxwell-Wagner Polarization Model (확장된 Maxwell-Wagner 분극 모델에 의한 서로 크기가 다른 입자들로 구성된 이성분계 전기유변 유체의 전산 모사)

  • Kim, Young Dae
    • Korean Chemical Engineering Research
    • /
    • v.60 no.4
    • /
    • pp.613-619
    • /
    • 2022
  • The extended Maxwell-Wagner polarization model is employed to describe the ER(Electrorheological) behavior of bi-dispersed ER suspensions, and solutions to the equation of motion are obtained by dynamic simulation. Under the same particle volume fraction, it is found that the dynamic yield stresses of uniform size suspensions do not depend on the particle size. Compared with uniform size suspensions, the dynamic yield stress is reduced for ER fluids consisting of two kinds of particles with different sizes. Compared with the dynamic yield stress behavior, for ${\dot{\gamma}}^*$≧0.01 the shear stress shows different behaviors depending on the particle sizes and the raio of different size particles. The simulation results show the nonlinear ER behavior (∆𝛕 ∝ En, n ≈ 1.55) of the conducting particle ER suspensions.

Comparison of fully coupled hydroelastic computation and segmented model test results for slamming and whipping loads

  • Kim, Jung-Hyun;Kim, Yonghwan;Korobkin, Alexander
    • International Journal of Naval Architecture and Ocean Engineering
    • /
    • v.6 no.4
    • /
    • pp.1064-1081
    • /
    • 2014
  • This paper presents a numerical analysis of slamming and whipping using a fully coupled hydroelastic model. The coupled model uses a 3-D Rankine panel method, a 1-D or 3-D finite element method, and a 2-D Generalized Wagner Model (GWM), which are strongly coupled in time domain. First, the GWM is validated against results of a free drop test of wedges. Second, the fully coupled method is validated against model test results for a 10,000 twenty-foot equivalent unit (TEU) containership. Slamming pressures and whipping responses to regular waves are compared. A spatial distribution of local slamming forces is measured using 14 force sensors in the model test, and it is compared with the integration of the pressure distribution by the computation. Furthermore, the pressure is decomposed into the added mass, impact, and hydrostatic components, in the computational results. The validity and characteristics of the numerical model are discussed.

Association Based Reasoning Method Using Rescorla-Wagner Model and Galton Free Association Test for Augmented Reality E-Commerce (증강현실 전자상거래 위한 Rescorla-Wagner 모형과 Galton 자유연상 실험을 활용한 연상 기반 추론 방법)

  • Kwon, Oh-Byung;Jung, Dong-Young
    • The Journal of Society for e-Business Studies
    • /
    • v.14 no.3
    • /
    • pp.131-151
    • /
    • 2009
  • Natural interface is important to select and provide the services in ubiquitous smart space such as u-plant, u-distribution. Augmented Reality(AR) has recently begun to receive attention as a realization tool for natural interface. AR provides virtual object on real environment and it differs from virtual reality. When AR is used, it has advantage to provide information intuitively and collaboratively. However AR is rarely used in e-commerce domain of ubiquitous smart space, and it has limitation which predefined information and services provide in a static manner. Hence, the purpose of this paper is to propose a methodology of AR based e-commerce which provides personalized association service by considering user's dynamic context. To do so, association algorithm is developed based on Rescorla-Wagner model and Galton's free association test.

  • PDF

Applying Rescorla-Wagner Model to Multi-Agent Web Service and Performance Evaluation for Need Awaring Reminder Service (Rescorla-Wagner 모형을 활용한 다중 에이전트 웹서비스 기반 욕구인지 상기 서비스 구축 및 성능분석)

  • Kwon, Oh-Byung;Choi, Keon-Ho;Choi, Sung-Chul
    • Journal of Intelligence and Information Systems
    • /
    • v.11 no.3
    • /
    • pp.1-23
    • /
    • 2005
  • Personalized reminder systems have to identify the user's current needs dynamically and proactively based on the user's current context. However, need identification methodologies and their feasible architectures for personalized reminder systems have been so far rare. Hence, this paper aims to propose a proactive need awaring mechanism by applying agent, semantic web technologies and RFID-based context subsystem for a personalized reminder system which is one of the supporting systems for a robust ubiquitous service support environment. RescorlaWagner model is adopted as an underlying need awaring theory. We have created a prototype system called NAMA(Need Aware Multi-Agent)-RFID, to demonstrate the feasibility of the methodology and of the mobile settings framework that we propose in this paper. NAMA considers the context, user profile with preferences, and information about currently available services, to discover the user's current needs and then link the user to a set of services, which are implemented as web services. Moreover, to test if the proposed system works in terms of scalability, a simulation was performed and the results are described.

  • PDF

Nonlinear rheology of polymer melts: a new perspective on finite chain extensibility effects

  • Wagner Manfred H.
    • Korea-Australia Rheology Journal
    • /
    • v.18 no.4
    • /
    • pp.199-207
    • /
    • 2006
  • Measurements by Luap et al. (2005) of elongational viscosity and birefringence of two nearly monodisperse polystyrene melts with molar masses $M_{w}$ of $206,000g{\cdot}mol^{-1}$ (PS206k) and $465,000g{\cdot}mol^{-1}$ (PS465k) respectively are reconsidered. At higher elongational stresses, the samples showed clearly deviations from the stress optical rule (SOR). The elongational viscosity data of both melts can be modeled quantitatively by the MSF model of Wagner et al. (2005), which is based on the assumption of a strain-dependent tube diameter and the interchain pressure term of Marrucci and Ianniruberto (2004). The only nonlinear parameter of the model, the tube diameter relaxation time, scales with $M_{w}^{2}$. In order to get agreement with the birefringence data, finite chain extensibility effects are taken into account by use of the $Pad\'{e}$ approximation of the inverse Langevin function, and the interchain pressure term is modified accordingly. Due to a selfregulating limitation of chain stretch by the FENE interchain pressure term, the transient elongational viscosity shows a small dependence on finite extensibility only, while the predicted steady-state elongational viscosity is not affected by non-Gaussian effects in agreement with experimental evidence. However, deviations from the SOR are described quantitatively by the MSF model by taking into account finite chain extensibility, and within the experimental window investigated, deviations from the SOR are predicted to be strain rate, temperature, and molar mass independent for the two nearly monodisperse polystyrene melts in good agreement with experimental data.