DOI QR코드

DOI QR Code

Simulation of Electrorheological Fluids by the Extended Maxwell-Wagner Polarization Model with Onsager Theory

Onsager 이론으로 확장한 Maxwell-Wagner 분극 모델에 의한 전기유변 현상 모사

  • Kim, Young Dae (School of Chemical Engineering, Chonnam National University)
  • 김영대 (전남대학교 화학공학부)
  • Received : 2020.03.02
  • Accepted : 2020.04.19
  • Published : 2020.08.01

Abstract

The extended Maxwell-Wagner polarization model is employed to describe the ER behavior of the conducting particle ER suspensions, and solutions to the equation of motion are obtained by dynamic simulation. The simulation results show the nonlinear ER behavior (Δτ∝En, n≈1.5) of the conducting particle ER suspensions. The response point, where shear stress reaches steady-state, is the point where stable break-up and rebuild of the chain-like structure of particles reaches. Also, it shows the minimum of shear stress, which corresponds the start-up of random particle configuration. The shear stress reaches plateau as particle volume fraction increases.

Onsager 이론으로 확장된 Maxwell-Wagner 분극 모델을 이용하여 전도성 입자로 제조된 전기유변(Electrorheological, ER) 액체의 전기유변 현상에 대한 전산 모사를 수행하였다. 확장된 Maxwell-Wagner 분극 모델을 이용한 전산 모사는 전도성 입자로 제조된 전기유변 액체의 특성인 비제곱 전기유변 현상(Δτ∝En, n≈1.5)을 확인하였다. 전단 흐름에서 전단응력이 정상상태에 도달하는 시점은 전기장 하에서 생성된 사슬 모양 구조가 전단 흐름에 의해 깨짐과 재생성이 정상상태에 도달하는 지점으로 나타났다. 또한, 전단 속도의 증가에 따라 전단응력이 최솟값을 보이는 전도성 입자를 기반으로 한 전기유변 액체의 현상도 관찰하였으며, 이것은 입자의 사슬 모양 구조가 무작위 배열로 바뀌는 순간에 발생하는 것임을 관찰하였다. 입자의 부피 분율 ϕ가 증가에 따라 전단응력은 증가하다가 일정해지는 경향도 관찰하였다.

Keywords

References

  1. Winslow, W. M., "Induced Fibration of Suspensions," J. Appl. Phys., 20, 1137-1140(1949). https://doi.org/10.1063/1.1698285
  2. Deinega, Y. F. and Vinogradov, G. V., "Electric Fields in Rheology of Disperse System," Rheol Acta., 23, 636-651(1984). https://doi.org/10.1007/BF01438804
  3. Shulman, Z. P., Gorodkin, R. G. and Korobko, E. V., "The Electrorheological Effects and Its Possible Uses," J. Non-Newt. Fluid Mech., 8, 29-41(1981). https://doi.org/10.1016/0377-0257(81)80003-1
  4. Hao, T., "Electrorheological Suspensions," Adv. Colloid Interface Sci., 97, 1-35(2002). https://doi.org/10.1016/S0001-8686(01)00045-8
  5. Liu, Y. D. and Choi, H. J., "Electrorheological Fluids: Smart Soft Matter and Characteristics," Soft Matter, 8, 11961-11978(2012). https://doi.org/10.1039/c2sm26179k
  6. Block, H. and Kelly, J. P., "Electro-rheology," J. Phys. D: Appl. Phys., 21, 1661-1677(1988). https://doi.org/10.1088/0022-3727/21/12/001
  7. Kim, D. H. and Kim, Y. D., "Electrorheological Properties of Polypyrrole and its Composite ER Fluids," J. Ind. Eng. Chem., 13(6), 879-894(2007).
  8. Filisko, F. E. and Razdilowski, L. H., "An intrinsic Mechanism for the Activity of Aumino-silicate Based Electrorheological Materials," J. Rheo., 34, 539-552(1990). https://doi.org/10.1122/1.550095
  9. Otsubo, Y., Sakine, M. and Katayama, S., "Effect of Adsorbed Water on the Electrorheology of Silica Suspensions," J. Coll. Interface Sci., 150, 324-330(1992). https://doi.org/10.1016/0021-9797(92)90201-V
  10. Kim, Y. D. and Klingenberg, D. J., "Two roles of Nonionic Surfactants on the Electrorheological Response," J. Coll. Interface Sci., 168, 568-578(1996).
  11. Dong, Y. Z., Kwon, S. H., Choi, H. J., Puthiaraj, P. and Ahn, W., "Electroresponsive Polymer-Inorganic Semiconducting Composite (MCTP-$Fe_3O_4$) Particles and Their Electrorheology," ACS OMEGA, 3, 17246-17253(2018). https://doi.org/10.1021/acsomega.8b02731
  12. Noh, J., Yoon, C. M. and Jang, J., "Enhanced Electrorheological Activity of Polyaniline Coated Mesoporous Silica with High Aspect Ratio," J. Coll. Interface Sci., 470, 237-244(2016). https://doi.org/10.1016/j.jcis.2016.02.061
  13. Lengalova, A., Pavlinek, B., Saha, P., Stejskal, J. and Quadrat, O., "Electrorheology of Polyaniline-coated Inorganic Particles in Silicone oil," J. Coll. Interface Sci., 258, 174-178(2003). https://doi.org/10.1016/S0021-9797(02)00091-7
  14. Stangroom, J. E., "Basic Considerations in Flowing Electrorheologcal Fluids," J. Stat. Phys., 64, 1059-1072(1991). https://doi.org/10.1007/BF01048814
  15. Kim, Y. D., "A Surfactant Bridge Model for the Nonlinear Electrorheological Effects of Surfactant Activated ER Suspensions," J. Coll. Interface Sci., 236, 225-232(2001). https://doi.org/10.1006/jcis.2000.7408
  16. Klass, D. L. and Martinek, T.W., "Electro-viscous Fluids," J. Appl. Phys. 38, 67-75(1967). https://doi.org/10.1063/1.1709013
  17. Klingenberg, D. J., Swol, F. and Zukoski, C. F., "Small Shear Rate Response of Electrorheological Suspensions I," J. Chem. Phys., 94, 6160-6169(1991). https://doi.org/10.1063/1.460402
  18. Davis, L. C. and Ginder, J. M., "Elevtrostatic Forces in Electrorheological Fluids", Progress in Electrorheology, ed. by K.O. Havelka and F.E. Filisko, New York, Plenum, 107-111(1995).
  19. Foulc, J. N., Atten, P. and Felici, N., "Macroscopic Model of Interaction between Particles in an Electrotheological Fluid," J. Electrostatics, 33, 103-112(1994). https://doi.org/10.1016/0304-3886(94)90065-5
  20. Parthasarathy, M. and Klingenberg, D. J., "Electrorheology: Mechanisms and Models," Mater. Sci. Eng., R17, 57-103(1996). https://doi.org/10.1016/0927-796X(96)00191-X
  21. Kim, Y. D., "Extended Maxwell-Wagner Polarization Modle with Onsager Theory for Electrorheological Phenomena," Korean Chem. Eng. Res., 56, 767-722(2018). https://doi.org/10.9713/kcer.2018.56.5.767
  22. Marshall, L. and Zukoski, C. F., "Effects of Electric Fields on the Rheology of Non-aqueous Concentrated Suspensions," J. Chem. Soc., 85, 2785-2795(1989).
  23. Kim, Y. D., Choi, G. J., Sim, S. J. and Cho, Y. S., "Electrorheological Suspensions of Two Polarizable Particles," Korean J. Chem. Eng., 16, 338-342(1999). https://doi.org/10.1007/BF02707122
  24. Onsagar, L., "Deviation from Ohm's Law in Weak Electrolytes," J. Chem. Phys., 2, 599-615(1934). https://doi.org/10.1063/1.1749541
  25. Kim, Y. D. and Park, D. H., "The Electrorheological Responses of Suspensions of Polypyrrole-coated Polyethylene Particles," Colloid Polym. Sci., 280, 828-834(2002). https://doi.org/10.1007/s00396-002-0689-9
  26. Klingenberg, D. J., Swol, F. and Zukoski, C. F., "Small Shear Rate Response of Electrorheological Suspensions II," J. Chem. Phys., 94, 6170-6178(1991). https://doi.org/10.1063/1.460403