Browse > Article
http://dx.doi.org/10.9713/kcer.2022.60.4.613

Simulation of Bi-dispersed Electrorheological Fluids of Different Particle Sizes by the Extended Maxwell-Wagner Polarization Model  

Kim, Young Dae (School of Chemical Engineering, Chonnam National University)
Publication Information
Korean Chemical Engineering Research / v.60, no.4, 2022 , pp. 613-619 More about this Journal
Abstract
The extended Maxwell-Wagner polarization model is employed to describe the ER(Electrorheological) behavior of bi-dispersed ER suspensions, and solutions to the equation of motion are obtained by dynamic simulation. Under the same particle volume fraction, it is found that the dynamic yield stresses of uniform size suspensions do not depend on the particle size. Compared with uniform size suspensions, the dynamic yield stress is reduced for ER fluids consisting of two kinds of particles with different sizes. Compared with the dynamic yield stress behavior, for ${\dot{\gamma}}^*$≧0.01 the shear stress shows different behaviors depending on the particle sizes and the raio of different size particles. The simulation results show the nonlinear ER behavior (∆𝛕 ∝ En, n ≈ 1.55) of the conducting particle ER suspensions.
Keywords
Electrorheology; Bidispersed electrorheological fluids; Extended maxwell-wagner polarization; Dynamic simulation;
Citations & Related Records
연도 인용수 순위
  • Reference
1 Klingenberg, D. J., Swol, F. and Zukoski, C. F., "Small Shear Rate Response of Electrorheological Suspensions I," J. Chem. Phys., 94, 6160-6169(1991).   DOI
2 Davis, L. C. and Ginder, J. M., "Elevtrostatic Forces in Electrorheological Fluids," Progress in Electrorheology, ed. by K.O. Havelka and F. E. Filisko, New York, Plenum, 107-111(1995).
3 Mori, Y., Tsunamoto, T. and Nakayama, H., "Computer Simulation of Electrorheological Fluids in the Binary System of Particle Size," Int. J. Mod. Phys. B, 13, 1822-1827(1999).   DOI
4 Tan, Z. Zou, X. Zhang, W. and Jin, Z., "Influences of the Size and Dielectric Properties of Particles on Electroeheological Response," Physical Review E, 59:3, 3177-3181(1999).   DOI
5 Marshall, L. and Zukoski, C. F., "Effects of Electric Fields on the Rheology of Non-aqueous Concentrated Suspensions," J. Chem. Soc., 85, 2785-2795(1989).
6 Foulc, J. N., Atten, P. and Felici, N., "Macroscopic Model of Interaction between Particles in an Electrotheological Fluid," J. Electrostatics, 33, 103-112(1994).   DOI
7 Wu, C. W. and Conrad, H., "Influenece of Mixed Particle Size om Electrorheological Response," J. Appl. Phys., 83, 3880-3884(1998).   DOI
8 Onsagar, L., "Deviation from Ohm's Law in Weak Electrolytes," J. Chem. Phys., 2, 599-615(1934).   DOI
9 Kim, Y. D., "Simulation of Electrorheological fluids by the Extended Maxwell-Wagner Polarization model with Onsager Theory," Korean Chem. Eng. Res., 58, 480-485(2020).
10 Kim, Y. D., Choi, G. J., Sim, S. J. and Cho, Y. S., "Electrorheological Suspensions of Two Polarizable Particles," Korean J. Chem. Eng., 16, 338-342(1999).   DOI
11 Klass, D. L. and Martinek, T. W., "Electro-viscous Fluids," J. Appl. Phys. 38, 67-75(1967).   DOI
12 Parthasarathy, M. and Klingenberg, D. J., "Electrorheology: Mechanisms and Models," Mater. Sci. Eng., R17, 57-103(1996).   DOI
13 Kim, Y. D., "A Surfactant Bridge Model for the Nonlinear Electrorheological Effects of Surfactant Activated ER Suspensions," J. Coll. Interface Sci., 236, 225-232(2001).   DOI
14 Winslow, W. M., "Induced Fibration of Suspensions," J. Appl. Phys., 20, 1137-1140(1949).   DOI
15 Koyanagi, K. Wang, X. and Karaki, T., "Research on Shear Stress of Electrorheological Fluid Containing Piezoelectric Powders," J. of Intell. Material Sys. and Struct., 33, 1101-1112(2022).   DOI
16 Dong, Y., Kim, H. and Choi, H., "Conducting Polymer-based Electro-responsive Smart Suspensions," Chemical Papers, 75, 5009-5034(2021).   DOI
17 Liu, Y. D. and Choi, H. J., "Electrorheological Fluids: Smart Soft Matter and Characteristics," Soft Matter, 8, 11961-11978(2012).   DOI
18 Kim, Y. D. and Kim, J. H., "Synthesis of Polypyrrole-polycaprolactone Composites by Emusion Polymerization and the Electrorheological Behavior of their Suspensions," Colloid Polym. Sci., 286, 631-637(2008).   DOI
19 Ota, M. and Miyamoto, T., "Optimum Particle Size Distribution of an Electrorheological Fluid," J. Appl. Phys., 76, 5528-35532 (1994).   DOI
20 Shulman, Z. P., Gorodkin, R. G. and Korobko, E. V., "The Electrorheological Effects and Its Possible Uses," J. Non-Newt. Fluid Mech., 8, 29-41(1981).   DOI
21 Hao, T., "Electrorheological Suspensions," Adv. Colloid Interface Sci., 97, 1-35(2002).   DOI
22 Block, H. and Kelly, J. P., "Electro-rheology," J. Phys. D: Appl. Phys., 21, 1661-1677(1988).   DOI
23 Otsubo, Y., Sakine, M. and Katayama, S., "Effect of Adsorbed Water on the Electrorheology of Silica Suspensions," J. Coll. Interface Sci., 150, 324-330(1992).   DOI
24 Deinega, Y. F. and Vinogradov, G. V., "Electric fields in Rheology of Disperse System," Rheol Acta., 23, 636-651(1984).   DOI
25 Kim, D. H. and Kim, Y. D., "Electrorheological Properties of Polypyrrole and its Composite ER Fluids," J. Ind. Eng. Chem., 13(6), 879-894(2007).
26 Filisko, F. E. and Razdilowski, L. H., "An intrinsic Mechanism for the Activity of Aumino-silicate Based Electrorheological Materials," J. Rheo., 34, 539-552(1990).   DOI
27 Kim, Y. D. and Klingenberg, D. J., "Two roles of Nonionic Surfactants on the Electrorheological Response," J. Coll. Interface Sci., 168, 568-578(1996).
28 Dong, Y. Z., Kwon, S. H., Choi, H. J., Puthiaraj, P. and Ahn, W., "Electroresponsive Polymer-Inorganic Semiconducting Composite(MCTP-Fe3O4) Particles and Their Electrorheology," ACS OMEGA, 3, 17246-17253(2018).   DOI
29 Noh, J., Yoon, C. M. and Jang, J., "Enhanced Electrorheological Activity of Polyaniline Coated Mesoporous Silica with High Aspect Ratio," J. Coll. Interface Sci., 470, 237-244(2016).   DOI
30 Lengalova, A., Pavlinek, B., Saha, P., Stejskal, J. and Quadrat, O., "Electrorheology of Polyaniline-coated Inorganic Particles in Silicone oil," J. Coll. Interface Sci., 258, 174-178(2003).   DOI
31 Kim, Y. D. and Kim, J. H., "Synthesis of Polypyrrole-SBS Composites and the Particle Size Effect on the Electroheological Properties of Their Suspensions," Synthetic Metals, 158, 479-483(2008).   DOI
32 Stangroom, J. E., "Basic Considerations in Flowing Electrorheologcal Fluids," J. Stat. Phys., 64, 1059-1072(1991).   DOI