Browse > Article

Nonlinear rheology of polymer melts: a new perspective on finite chain extensibility effects  

Wagner Manfred H. (TU Berlin, Polymertechnik/Polymerphysik)
Publication Information
Korea-Australia Rheology Journal / v.18, no.4, 2006 , pp. 199-207 More about this Journal
Abstract
Measurements by Luap et al. (2005) of elongational viscosity and birefringence of two nearly monodisperse polystyrene melts with molar masses $M_{w}$ of $206,000g{\cdot}mol^{-1}$ (PS206k) and $465,000g{\cdot}mol^{-1}$ (PS465k) respectively are reconsidered. At higher elongational stresses, the samples showed clearly deviations from the stress optical rule (SOR). The elongational viscosity data of both melts can be modeled quantitatively by the MSF model of Wagner et al. (2005), which is based on the assumption of a strain-dependent tube diameter and the interchain pressure term of Marrucci and Ianniruberto (2004). The only nonlinear parameter of the model, the tube diameter relaxation time, scales with $M_{w}^{2}$. In order to get agreement with the birefringence data, finite chain extensibility effects are taken into account by use of the $Pad\ approximation of the inverse Langevin function, and the interchain pressure term is modified accordingly. Due to a selfregulating limitation of chain stretch by the FENE interchain pressure term, the transient elongational viscosity shows a small dependence on finite extensibility only, while the predicted steady-state elongational viscosity is not affected by non-Gaussian effects in agreement with experimental evidence. However, deviations from the SOR are described quantitatively by the MSF model by taking into account finite chain extensibility, and within the experimental window investigated, deviations from the SOR are predicted to be strain rate, temperature, and molar mass independent for the two nearly monodisperse polystyrene melts in good agreement with experimental data.
Keywords
Citations & Related Records

Times Cited By Web Of Science : 3  (Related Records In Web of Science)
Times Cited By SCOPUS : 3
연도 인용수 순위
1 Marrucci, G. and N. Grizzuti, 1988, Fast flows of concentrated polymers: Predictions of the tube model on chain stretching, Gazz Chim Italiana 118, 179-185
2 Ottinger, H.C., 1999, A thermodynamically admissible reptation model for fast flows of entangled polymers, J. Rheol. 43, 1461- 1493   DOI
3 Pearson, D.S., E. Herbolzheimer, N. Grizzuti and G. Marrucci, 1991, Transient behavior of entangled polymers at high shear rates, J. Polym. Sci. B: Polym. Phys. 29, 1589-1597   DOI
4 Rothstein, J.P. and G.H. McKinley, 2002, A comparison of the stress and birefringence growth of dilute, semi-dilute and concentrated polymer solutions in uniaxial extensional flows, J. Non-Newtonian Fluid Mech. 108, 275-290   DOI   ScienceOn
5 van Meerveld, J., 2004, Validity of the linear stress optical rule in mono-, bi- and polydisperse systems of entangled linear chains, J. Non-Newtonian Fluid Mech. 123, 259-267   DOI   ScienceOn
6 Wagner, M.H., S. Kheirandish and O. Hassager, 2005, Quantitative prediction of transient and steady-state elongational viscosity of nearly monodisperse polystyrene melts, J. Rheol. 49, 1317-1327   DOI   ScienceOn
7 Ye, X. and T. Sridhar, 2005, Effects of the polydispersity on rheological properties of entangled polystyrene solutions, Macromolecules 38, 3442-3449   DOI   ScienceOn
8 Bird, R.B., Ch.F. Curtiss, R.C. Armstrong and O. Hassager, 1987, Dynamics of Polymeric Liquids Vol. 2. Kinetic Theory, Wiley and Sons, USA
9 Doi, M. and S.F. Edwards, 1978, Dynamics of concentrated polymer systems. Part 2.- Molecular motion under flow, J. Chem. Soc., Faraday Trans. 2 74, 1802-1817   DOI
10 Hua, Ch.C. and J.D. Schieber, 1998, Segment connectivity, chain-length breathing, segmental stretch, and constraint release in reptation models. I. Theory and single-step strain predictions, J. Chem. Phys. 109, 10018-10027   DOI   ScienceOn
11 Inoue, T, H. Okamoto and K. Osaki, 1991, Birefringence of amorphous polymers. 1. Dynamic measurements on polystyrene, Macromolecules 24, 5670-5675   DOI
12 Lodge, A.S., 1955, Variation of Flow Birefringence with Stress, Nature 176, 838-839   DOI
13 Luap, C., Ch. Muller, T. Schweizer, and D.C. Venerus, 2005, Simultaneous stress and birefringence measurements during uniaxial elongation of polystyrene melts with narrow molecular weight distribution, Rheol. Acta 45, 83-91   DOI
14 Fan, B., D.O. Kazmer, W.C. Bushko, R.P. Theriault and A.J. Poslinski, 2004, Biregringence prediction of optical media, Polym. Eng. Sci. 44, 814-824   DOI   ScienceOn
15 Kotaka, T., A. Kojima and M. Okamoto, 1997, Elongational flow opto-rheometry for polymer melts- 1. Construction of an elongational flow opto-rheometer and some preliminary results, Rheol. Acta 36, 646-656
16 Cohen, A., 1991, A Pade approximant to the inverse Langevin function, Rheol. Acta 30, 270-273   DOI
17 Philippoff, W., 1956, Flow-birefringence and stress, Nature 178, 811-812   DOI
18 Venerus, D.C., S.-H. Zhu and H.C. Ottinger, 1999, Stress and birefringence measurements during the uniaxial elongation of polystyrene melts, J. Rheol. 43, 795-813   DOI   ScienceOn
19 Graessley, W.W., 2004, Polymeric Liquids and Networks: Structure and Properties, Garland Science, New York
20 Subramanian, P.R. and V. Galiatsatos, 1993, Stress-optical properties of bimodal polymer networks, Makromol. Chem., Macromol. Symp. 76, 233-240
21 Sridhar, T., D.A. Nguyen and G.G. Fuller, 2000, Birefringence and stress growth in uniaxial extension of polymer solutions, J. Non-Newtonian Fluid Mech. 90, 299-315   DOI   ScienceOn
22 Larson, R.G., 1988, Constitutive Equations for Polymer Melts, Butterworths, Stoneham
23 Wagner, M.H. and J. Schaeffer, 1992, Nonlinear measures for general biaxial extension of polymer melts, J. Rheol. 36, 1-26   DOI
24 Cathey, Ch.A. and G.G. Fuller, 1990, The optical and mechanical response of flexible polymer solutions to extensional flow, J. Non-Newtonian Fluid Mech. 34, 63-68   DOI   ScienceOn
25 Kroger, M., C. Luap and R. Muller, 1997, Polymer melts under uniaxial elongational flow: Stress-optical behavior from experiments and nonequilibrium molecular dynamics computer simulations, Macromolecules 30, 526-539   DOI   ScienceOn
26 Oda, K., J.L. White and E.S. Clark, 1978, Influence of melt deformation history on orientation in vitrified polymers, Polym. Eng. Sci. 18, 53-59   DOI   ScienceOn
27 Talbott, W.H. and J.D. Goddard, 1979, Streaming birefringence in extensional flow of polymer solutions, Rheol. Acta 18, 505-517   DOI
28 Muller, R. and D. Froelich, 1985, New extensional rheometer for elongational viscosity and flow birefringence measurements: some results on polystyrene melts, Polymer 26, 1477-1482   DOI   ScienceOn
29 Mead, D.W. and R.G. Larson, 1990, Rheoptical study of isotropic solutions of stiff polymers, Macromolecules 23, 2524-2533   DOI
30 Winter, H.H. and M. Mours, 2003, IRIS Developments, http://rheology.tripod.com/
31 Doi, M. and S.F. Edwards, 1979, Dynamics of concentrated polymer systems. Part 4.- Rheological properties, J. Chem. Soc., Faraday Trans. 2 75, 38-54   DOI
32 Janeschitz-Kriegl, H., 1983, Polymer Melt Rheology and Flow Birefringence, Springer-Verlag, Berlin
33 Wagner, M.H., 1990, The nonlinear strain measure of polyisobutylene melt in general biaxial flow and its comparison to the Doi-Edwards model, Rheol. Acta 29, 594-603   DOI
34 Marrucci, G. and G. Ianniruberto, 2004, Interchain pressure effect in extensional flows of entangled polymer melts, Macromolecules 37, 3934-3942   DOI   ScienceOn
35 Matsumoto, T. and D.C. Bogue, 1977, Stress birefringence in amorphous polymers under nonisothermal conditions, J. Polym Sci. Polym. Phys. 15, 1663-1674   DOI   ScienceOn
36 Mead D.W., R.G. Larson and M. Doi, 1998, A molecular theory for fast flows of entangled polymers, Macromolecules 31, 7895-7914   DOI   ScienceOn
37 Muller, R. and J.J. Pesce, 1994, Stress-optical behaviour near the Tg and melt flow-induced anisotropy in amorphous polymers, Polymer 35, 734-739   DOI   ScienceOn
38 Bach, A., K. Almdal, H.K. Rasmussen and O. Hassager, 2003, Elongational viscosity of narrow molar mass distribution polystyrene, Macromolecules 36, 5174-5179   DOI   ScienceOn
39 Fetters, L.J., D.J. Lohse, S.T. Milner and W.W. Graessley, 1999, Packing length influence in linear polymer melts on the entanglement, critical, and reptation molecular weights, Macromolecules 32, 6847-6851   DOI   ScienceOn
40 Mead, D.W. and L.G. Leal, 1995, The reptation model with segmental stretch. I. Basic equations and general properties, Rheol. Acta 34, 339-359   DOI
41 Wales, J.L.S., 1976, The Application of Flow Birefringence to Rheological Studies of Polymer Melts, Delft University Press
42 Pellens, L., J. Vermant and J. Mewis, 2005, Deviations from the stress-optical rule in telechelic associative polymer solutions, Macromolecules 38, 1911-1918   DOI   ScienceOn
43 Fuller, G.G., 1995, Optical Rheometry of Complex Fluids, Oxford University Press, New York
44 Wagner, M.H., P. Rubio and H. Bastian, 2001, The molecular stress function model for polydisperse polymer melts with dissipative convective constraint release, J. Rheol. 45, 1387-1412   DOI   ScienceOn
45 Wagner, M.H., M. Yamaguchi and M. Takahashi, 2003, Quantitative assessment of strain hardening of low-density polyethylene melts by the molecular stress function model, J. Rheol. 47, 779-793   DOI   ScienceOn
46 Fang, G., M. Kroger and H.C. Ottinger, 2000, A thermodynamically admissible reptation model for fast flows of entangled polymers. II. Model predictions for shear and extensional flows, J. Rheol. 44, 1293-1317   DOI   ScienceOn