DOI QR코드

DOI QR Code

Extended Maxwell-Wagner Polarization Model with Onsager Theory for the Electrorheological Phenomena

전기유변현상 해석을 위하여 Onsager 이론으로 확장한 Maxwell-Wagner 분극 모델

  • Kim, Young Dae (School of Chemical Engineering, Chonnam National University)
  • 김영대 (전남대학교 화학공학부)
  • Received : 2018.07.24
  • Accepted : 2018.09.07
  • Published : 2018.10.01

Abstract

Among various mechanisms for ER phenomena, the electrostatic polarization and conduction models were known as the most promising theoretical models. However, many inherited defects have limited their uses for the development of effective ER fluids. To resolve these problems, extended Maxwell-Wagner polarization model with Onsager theory was developed. It was observed that the extended model resolved the problems, suggesting that the extended model can be used for the development of effect ER fluids.

전기유변(ER) 현상을 위해 제시된 메커니즘들이 중에서 정전기 분극 모델과 전도 모델이 이론적인 측면에서 적합한 것으로 알려져 있다. 그러나 이 모델들은 자체적인 제한들 때문에 효과적인 ER 액체의 개발에 적절한 도움이 되지 못했다. 이 문제를 해결하기 위해 Onsager 이론으로 확장한 Maxwell-Wagner 분극 모델을 개발하였다. 확장한 Maxwell-Wagner 분극 모델은 항복응력의 전기장 주파수 및 전기장 크기의 비제곱 의존성을 설명할 수 없는 정전기 분극 모델의 단점과 전기장 하에서의 입자의 미세 구조 변화를 예측할 수 없는 전도 모델의 단점을 해결할 수 있었다. 또한 이 모델은 정전기 분극 모델과 전도 모델에서 예측할 수 없었던 항복응력에의 입자 전도도 영향을 고려할 수 있는 장점도 있어 효과적인 ER 액체의 개발에 기여하리라 판단된다.

Keywords

References

  1. Winslow, W. M., "Induced Fibration of Suspensions," J. Appl. Phys., 20, 1137-1140(1949). https://doi.org/10.1063/1.1698285
  2. Deinega, Y. F. and Vinogradov, G. V., "Electric fields in Rheology of Disperse System," Rheol Acta., 23, 636-651(1984). https://doi.org/10.1007/BF01438804
  3. Shulman, Z. P., Gorodkin, R. G. and Korobko, E. V., "The Electrorheological Effects and Its Possible Uses," J. Non-Newt. Fluid Mech., 8, 29-41(1981). https://doi.org/10.1016/0377-0257(81)80003-1
  4. Hao, T., "Electrorheological Suspensions," Adv. Colloid Interface Sci., 97, 1-35(2002). https://doi.org/10.1016/S0001-8686(01)00045-8
  5. Liu, Y. D. and Choi, H. J., "Electrorheological Fluids: Smart Soft Matter and Characteristics," Soft Matter, 8, 11961-11978 (2012). https://doi.org/10.1039/c2sm26179k
  6. Block, H. and Kelly, J. P., "Electro-heology," J. Phys. D: Appl. Phys., 21, 1661-1677(1988). https://doi.org/10.1088/0022-3727/21/12/001
  7. Kim, D. H. and Kim, Y. D., "Electrorheological Properties of Polypyrrole and its Composite ER Fluids," J. Ind. Eng. Chem., 13(6), 879-894(2007).
  8. Filisko, F. E. and Razdilowski, L. H., "An intrinsic Mechanism for the Activity of Aumino-silicate Based Electrorheological Materials," J. Rheo., 34, 539-552(1990). https://doi.org/10.1122/1.550095
  9. Otsubo, Y., Sakine, M. and Katayama, S., "Effect of Adsorbed Water on the Electrorheology of Silica Suspensions," J. Coll. Interface Sci., 150, 324-330(1992). https://doi.org/10.1016/0021-9797(92)90201-V
  10. Kim, Y. D. and Klingenberg, D. J., "Two roles of Nonionic Surfactants on the Electrorheological Response," J. Coll. Interface Sci., 168, 568-578(1996).
  11. Shin, K., Kim, D., Cho, J-C., Lim, H-S., Kim, J. W. and Suh, K- D., "Monodisperse Conducting Colloidal Dipoles with Symmetric Dimer Structure for Enhancing Electrorheology Properties," J. Coll. Interface Sci., 374, 18-24(2012). https://doi.org/10.1016/j.jcis.2012.01.055
  12. Noh, J., Yoon, C. M. and Jang, J., "Enhanced Electrorheological Activity of Polyaniline Coated Mesoporous Silica with High Aspect Ratio," J. Coll. Interface Sci., 470, 237-244(2016). https://doi.org/10.1016/j.jcis.2016.02.061
  13. Lengalova, A., Pavlinek, B., Saha, P., Stejskal, J. and Quadrat, O., "Electrorheology of Polyaniline-coated Inorganic Particles in Silicone oil," J. Coll. Interface Sci., 258, 174-178(2003). https://doi.org/10.1016/S0021-9797(02)00091-7
  14. Stangroom, J. E., "Basic Considerations in Flowing Electrorheologcal Fluids," J. Stat. Phys., 64, 1059-1072(1991). https://doi.org/10.1007/BF01048814
  15. Kim, Y. D., "A Surfactant Bridge Model for the Nonlinear Electrorheological Effects of Surfactant Activated ER Suspensions," J. Coll. Interface Sci., 236, 225-232(2001). https://doi.org/10.1006/jcis.2000.7408
  16. Klass, D. L. and Martinek, T.W., "Electro-viscous Fluids," J. Appl. Phys. 38, 67-75(1967). https://doi.org/10.1063/1.1709013
  17. Klingenberg, D. J. and Zukoski, C. F., "Studies on the Stedy-shear Behavior of Electrorheological Suspensions," Langmuir, 6, 15-24(1990). https://doi.org/10.1021/la00091a003
  18. Davis, L. C. and Ginder, J. M., "Elevtrostatic Forces in Electro-rheological Fluids," Progress in Electrorheology, ed. by K.O. Havelka and F.E. Filisko, New York, Plenum, 107-111(1995).
  19. Foulc, J. N., Atten, P. and Felici, N., "Macroscopic Model of Interaction between Particles in an Electrotheological Fluid," J. Electrostatics, 33, 103-112(1994). https://doi.org/10.1016/0304-3886(94)90065-5
  20. Parthasarathy, M. and Klingenberg, D. J., "Electrorheology: Mechanisms and Models," Mater. Sci. Eng., R17, 57-103(1996).
  21. Von Hippel A. R., Dielectric Materials and Applications, Cambridge and Wiley, New York(1954).
  22. Kim, Y. D. and Park, D. H., "The Electrorheological Responses of Suspensions of Polypyrrole-coated Polyethylene Particles," Colloid Polym. Sci., 280, 828-834(2002). https://doi.org/10.1007/s00396-002-0689-9
  23. Onsagar, L., "Deviation from Ohm's Law in Weak Electrolytes," J. Chem. Phys., 2, 599-615(1934). https://doi.org/10.1063/1.1749541
  24. Klingenberg, D. J., Dierking, D. and Zukoski, C. F., "Stress Transfer Mechanism in Electrorheological Suspensions," J. Chem. Soc. Faraday Trans., 87, 425-430(1991). https://doi.org/10.1039/ft9918700425