• Title/Summary/Keyword: Wafer profile

Search Result 107, Processing Time 0.028 seconds

Fabrication of embedded bottom electrodes for submicron beam resonators (서브마이크론 빔 레조네이터 제작을 위한 바닥전극 형성방법)

  • Lee, Yong-Seok;Jang, Yun-Ho;Bang, Yong-Seung;Kim, Jung-Mu;Kim, Jong-Man;Kim, Yong-Kweon
    • Proceedings of the KIEE Conference
    • /
    • 2008.10a
    • /
    • pp.131-132
    • /
    • 2008
  • We describe a fabrication method of submicron glass trenches which have embedded metal lines for the future application of nano-scale RF MEMS devices. The glass wafer was etched using two different conditions to identify the relationship between the slope of glass trenches and the slope of photroresist. A self-aligned metal photomask and negative photroresist (PR) slope were used to insert metal lines inside the glass trenches. The PR slope patterned by backside photolithography was affected by the profile of preformed glass trenches. Gold was well fabricated in the $0.7{\mu}m$ wide trench thanks to the negative PR slope. Nano-scale glass trenches with embedded metal lines can be used as a bottom electrode in submicron beam resonators operating with a high resonant frequency.

  • PDF

Optimization of the Phosphorus Doped BSF Doping Profile and Formation Method for N-type Bifacial Solar Cells

  • Cui, Jian;Ahn, Shihyun;Balaji, Nagarajan;Park, Cheolmin;Yi, Junsin
    • Current Photovoltaic Research
    • /
    • v.4 no.2
    • /
    • pp.31-41
    • /
    • 2016
  • n-type PERT (passivated emitter, rear totally diffused) bifacial solar cells with boron and phosphorus diffusion as p+ emitter and n+ BSF (back surface field) have attracted significant research interest recently. In this work, the influences of wafer thickness, bulk lifetime, emitter, BSF on the photovoltaic characteristics of solar cells are discussed. The performance of the solar cell is determined by using one-dimensional solar cell simulation software PC1D. The simulation results show that the key role of the BSF is to decrease the surface doping concentration reducing the recombination and thus, increasing the cell efficiency. A lightly phosphorus doped BSF (LD BSF) was experimentally optimized to get low surface dopant concentration for n type bifacial solar cells. Pre-oxidation combined with a multi-plateau drive-in, using limited source diffusion was carried out before pre-deposition. It could reduce the surface dopant concentration with minimal impact on the sheet resistance.

Surgery-first approach using a three-dimensional virtual setup and surgical simulation for skeletal Class III correction

  • Im, Joon;Kang, Sang Hoon;Lee, Ji Yeon;Kim, Moon Key;Kim, Jung Hoon
    • The korean journal of orthodontics
    • /
    • v.44 no.6
    • /
    • pp.330-341
    • /
    • 2014
  • A 19-year-old woman presented to our dental clinic with anterior crossbite and mandibular prognathism. She had a concave profile, long face, and Angle Class III molar relationship. She showed disharmony in the crowding of the maxillomandibular dentition and midline deviation. The diagnosis and treatment plan were established by a three-dimensional (3D) virtual setup and 3D surgical simulation, and a surgical wafer was produced using the stereolithography technique. No presurgical orthodontic treatment was performed. Using the surgery-first approach, Le Fort I maxillary osteotomy and mandibular bilateral intraoral vertical ramus osteotomy setback were carried out. Treatment was completed with postorthodontic treatment. Thus, symmetrical and balanced facial soft tissue and facial form as well as stabilized and well-balanced occlusion were achieved.

The Effect of Pad Groove Dimension on Polishing Performance in CMP (CMP에서 패드 그루브의 채수가 연마특성에 미치는 영향)

  • Park, Ki-Hyun;Kim, Hyung-Jae;Jeong, Young-Seok;Jeong, Hae-Do;Park, Jae-Hong
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 2004.07b
    • /
    • pp.1308-1311
    • /
    • 2004
  • It is very important that get polishing characteristic that to be stable that accomplish planarization of high efficiency in chemical mechanical polishing, and there is repeatability Groove of pad causes much effects in flow of slurry among various factors that influence in polishing characteristic, is expected to cause change of lubrication state and polishing characteristic in contact between wafer and pad. Therefore, divided factors of pad groove by groove pattern, groove profile, groove dimensions. This research wishes to study effect that dimension of pad groove gets in polishing performance. When changed dimension (width, depth, pitch of groove) of groove, measured change of removal rate and friction force. According as groove dimension changes, could confirm that removal rate and friction force change. While result of this experiment studies effect of pad groove in CMP, it is expected to become small help.

  • PDF

Utilizing Advanced Pad Conditioning and Pad Motion in WCMP

  • Kim, Sang-Yong;Chung, Hun-Sang;Park, Min-Woo;Kim, Chang-Il;Chang, Eui-Goo
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 2001.11b
    • /
    • pp.171-175
    • /
    • 2001
  • Chemical mechanical polishing(CMP) process has been widely used to planarize dielectrics and metal, which can apply to employed in integrated circuits for sub-micron technology. Despite the increased use of CMP process, it is difficult to accomplish the global planarization of free-defects in inter level dielectrics and metal. Especially, defects like (micro-scratch) lead to severe circuit failure, and affects yield. Current conditioning method - bladder type, orbital pad motion- usually provides unsuitable pad profile during ex-situ conditioning near the end of pad life. Since much of the pad wear occurs by the mechanism of bladder type conditioning and its orbital motion without rotation, we need to implement new ex-situ conditioner which can prevent abnormal regional force on pad caused by bladder-type and also need to rotate the pad during conditioning. Another important study of ADPC is related to the orbital scratch of which source is assumed as diamond grit dropped from the strip during ex-situ conditioning. Scratch from diamond grit damaged wafer severely so usually scraped. Figure 1 shows the typical shape of scratch damaged from diamond. e suspected that intensive forces to the edge area of bladder type stripper accelerated the drop of Diamond grit during conditioning. so new designed Flat stripper was introduced.

  • PDF

Fabrication of Al2O3 SOI with direct bonding (직접 접합에 의한 Al2O3 SOI 구조 제작)

  • Kong, Dae-Young;Eun, Duk-Soo;Bae, Young-Ho;Lee, Jong-Hyun
    • Journal of Sensor Science and Technology
    • /
    • v.14 no.3
    • /
    • pp.206-210
    • /
    • 2005
  • The SOI structure with buried alumina was fabricated by ALD followed by bonding and etchback process. The interface of alumina and silicon was analyzed by CV measurements and cross section was investigated by SEM analysis. The density of interface state of alumina and silicon was 2.5E11/$cm^{2}$-eV after high temperature annealing for wafer bonding. It was confirmed that the surface silicon layer was completely isolated from substrate by cross section SEM and AES depth profile. The device on this alumina SOI structure would have better thermal properties than that on conventional SOI due to higher thermal conductivity of alumina than that of silicon dioxide.

Stability and Improvement of Polishing Pad in W CMP (W CMP 공정에서의 연마패드표면 안정화 상태와 그 개선)

  • Park, Jae-Hong;Kinoshita, Masaharu;Yoshida, Koichi;Matsumura, Shinichi;Jeong, Hae-Do
    • Journal of the Korean Institute of Electrical and Electronic Material Engineers
    • /
    • v.20 no.12
    • /
    • pp.1027-1033
    • /
    • 2007
  • In this research, the polishing pad for W CMP has been analyzed to understand stabilization of polishing performance. For stabilization of process, the polishing pad condition is one of important factors. The polishing pad plays a key role in polishing process, because it contact with reacted surface of wafer[1]. The physical property of pad surface is ruled by conditioning tool which makes roughness and profile of pad surface. Pad surface affects on polishing performance such as RR(Removal Rate) and uniformity in CMP. The stabilized pad surface has stable roughness. And its surface has high level of wettability which can increase the probability of abrasive adhesion on pad. The result of this research is that the reduction of break-in and dummy polishing process were achieved by artificial machining to make stable pad surface. In this research, urethane polishing pad which is named IC pad(Nitta-Haas Inc.) and has micro pore structure, is studied. Because, this type of pad is the most conventional type.

Polishing Characteristics of Pt Electrode Materials by Addition of Oxidizer (산화제 첨가에 따른 백금 전극 물질의 연마 특성)

  • Ko, Pil-Ju;Kim, Nam-Hoon;Lee, Woo-Sun
    • Proceedings of the KIEE Conference
    • /
    • 2006.07c
    • /
    • pp.1384-1385
    • /
    • 2006
  • Platinum is a candidate of top and bottom electrode in ferroelectric random access memory and dynamic random access memory. High dielectric materials and ferroelectric materials were generally patterned by plasma etching, however, the low etch rate and low etching profile were repoted. We proposed the damascene process of high dielectric materials and ferroelectric materials for patterning process through the chemical mechanical polishing process. At this time, platinum as a top electrode was used for the stopper for the end-point detection as Igarashi model. Therefore, the control of removal rate in platinum chemical mechanical polishing process was required. In this study, an addition of $H_{2}O_{2}$ oxidizer to alumina slurry could control the removal rate of platinum. The removal rate of platinum rapidly increased with an addition of 10wt% $H_{2}O_{2}$ oxidizer from 24.81nm/min to 113.59nm/min. Within-wafer non-uniformity of platinum after chemical mechanical polishing process was 9.93% with an addition of 5wt% $H_{2}O_{2}$ oxidizer.

  • PDF

The Develop and Research of EPD system for the semiconductor fine pattern etching (반도체 미세 패턴 식각을 위한 EPD 시스템 개발 및 연구)

  • Kim, Jae Pil;Hwang, WooJin;Shin, Youshik;Nam, JinTaek;Kim, hong Min;Kim, chang Eun
    • Journal of the Korea Safety Management & Science
    • /
    • v.17 no.3
    • /
    • pp.355-362
    • /
    • 2015
  • There has been an increase of using Bosch Process to fabricate MEMS Device, TSV, Power chip for straight etching profile. Essentially, the interest of TSV technology is rapidly floated, accordingly the demand of Bosch Process is able to hold the prominent position for straight etching of Si or another wafers. Recently, the process to prevent under etching or over etching using EPD equipment is widely used for improvement of mechanical, electrical properties of devices. As an EPD device, the OES is widely used to find accurate end point of etching. However, it is difficult to maintain the light source from view port of chamber because of contamination caused by ion conflict and byproducts in the chamber. In this study, we adapted the SPOES to avoid lose of signal and detect less open ratio under 1 %. We use 12inch Si wafer and execute the through etching 500um of thickness. Furthermore, to get the clear EPD data, we developed an algorithm to only receive the etching part without deposition part. The results showed possible to find End Point of under 1 % of open ratio etching process.

In Vitro Antitumor Activity of BCNU-Loaded PLGA Wafer Containing Additives (첨가제 함유 BCNU/PLGA웨이퍼의 in vitro 항암 활성)

  • Lee, Jin-Soo;An, Tae-Kun;Shin, Phil-Kyung;Chae, Ghang-Soo;Jeong, Je-Kyo;Lee, Bong;Cho, Sun-Hang;Khang, Gil-Son;Lee, Hai-Bang
    • Polymer(Korea)
    • /
    • v.27 no.3
    • /
    • pp.217-225
    • /
    • 2003
  • We fabricated the 1,3-bis(2-chloroethyl)-1-nitrosourea (BCNU, carmustine)-loaded PLGA wafers containing poly(N-vinylpyrrolidone) (PVP) or tedium chloride (NaCl) in order to control the release profile of drug in special shape (3 in diameter, 1 mm in thickness) by direct compression method. In vitro release profiles of BCNU could be controlled by additives contained in the wafers. Initial release amount, release rate and duration of BCNU could be controlled with presence of PVP or NaCl. In vitro antitumor activity accessed using 9L gliosarcoma cell line has been evaluated by assaying the viability of cells treated with BCNU released from the wafers containing additives resulting in continuous growth inhibition of 9L gliosarcoma tumor cells. Specially, the continuous growth inhibition of BCNU-loaded PLGA wafers containing additives was more effective than that of non-additive BCNU-loaded PLGA wafers. The cytotoxic effect of the drug from the wafers containing NaCl as compared to wafers containing PVP was more enhanced.