• 제목/요약/키워드: Wafer dicing

검색결과 40건 처리시간 0.025초

레이저 다이싱에 의한 die strength 분석 (Analysis of die strength for laser dicing)

  • 이용현;최경진;배성창
    • 대한전기학회:학술대회논문집
    • /
    • 대한전기학회 2006년도 심포지엄 논문집 정보 및 제어부문
    • /
    • pp.327-329
    • /
    • 2006
  • In this paper, the cutting qualities by laser dicing and fracture strength of a silicon die is investigated. Laser micromachining is the non-contact process using thermal ablation and evaporation mechanisms. By these mechanisms, debris is generated and stick on the surface of wafer, which is the problem to apply laser dicing to semiconductor manufacture process. Unlike mechanical sawing using diamond blade, chipping on the surface and crack on the back side of wafer isn't made by laser dicing. Die strength by laser dicing is measured via the three-point bend test and is compared with the die strength by mechanical sawing. As a results, die strength by laser dicing shows a decrease of 50% in compared with die strength by mechanical sawing.

  • PDF

레이저를 이용한 웨이퍼 다이싱 특성 (Characteristics of Laser Wafer Dicing)

  • 이용현;최경진;유승열
    • 반도체디스플레이기술학회지
    • /
    • 제5권3호
    • /
    • pp.5-10
    • /
    • 2006
  • This paper investigates cutting qualities after laser dicing and predicts the problems that can be generated by laser dicing. And through 3 point bending test, die strength is measured and the die strength after laser dicing is compared with the die strength after mechanical sawing. Laser dicing is chiefly considered as an alternative to overcome the defects of mechanical sawing such as chipping on the surface and crack on the back side. Laser micromachining is based on the thermal ablation and evaporation mechanism. As a result of laser dicing experiments, debris on the surface of wafer is observed. To eliminate the debris and protect the surface, an experiment is done using a water soluble coating material and ultrasonic. The consequence is that most of debris is removed. But there are some residues around the cutting line. Unlike mechanical sawing, chipping on the surface and crack on the back side is not observed. The cross section of cutting line by laser dicing is rough as compared with that by mechanical sawing. But micro crack can not be seen. Micro crack reduces die strength. To measure this, 3 point bending test is done. The die strength after laser dicing decreases to a half of the die strength after mechanical sawing. This means that die cracking during package assembly can occur.

  • PDF

웨이퍼 장착을 이용한 다이싱 척의 평탄도 평가 방법에 관한 연구 (A Study on the Flatness Evaluation Method of the Dicing Chuck using Chucked-wafer)

  • 육인수;이호철
    • 한국공작기계학회논문집
    • /
    • 제17권3호
    • /
    • pp.53-58
    • /
    • 2008
  • This study was conducted to evaluate the flatness of the porous type of dicing chuck. Two measurement systems for a vacuum chuck with a porous type of ceramic plate were prepared using a digital indicator and a laser interferometer. 6 inch of silicon and glass wafer were also used. Vacuum pressure from 100mmHg to 700mmHg by 100mmHg was increased. From experiments, chucked-wafer flatness was converged to the dicing chuck flatness itself even though the repeatability of contact method using indicator was unstable. Finally, the chuck flatness was estimated below $2{\mu}m$ with peak-to valley value.

실리콘 웨이퍼의 초정밀 절단가공에 관한 연구 (A Study on Ultraprecision Dicing Machining of Silicon Wafer)

  • 이은상;송지복;김성철
    • 한국정밀공학회지
    • /
    • 제17권6호
    • /
    • pp.185-191
    • /
    • 2000
  • Recently, a slightest influence to the circuit can be a great damage because the size of semiconductor smaller. It must be controlled the chippingless dicing process and the precision dicing without any damage to tile circuit. In this study, the relationship between chipping effect and the force of dicing was analysed. The rate of chipping was decreased as the farce of dicing decreased. It was also examined that the farce of dicing decreased according to the lower feed rate and higher blade speed. The lower feed rate and the higher blade speed must be controlled to achieve the chippingless process.

  • PDF

An investigation on dicing 28-nm node Cu/low-k wafer with a Picosecond Pulse Laser

  • Hsu, Hsiang-Chen;Chu, Li-Ming;Liu, Baojun;Fu, Chih-Chiang
    • 마이크로전자및패키징학회지
    • /
    • 제21권4호
    • /
    • pp.63-68
    • /
    • 2014
  • For a nanoscale Cu/low-k wafer, inter-layer dielectric (ILD) and metal layers peelings, cracks, chipping, and delamination are the most common dicing defects by traditional diamond blade saw process. Sidewall void in sawing street is one of the key factors to bring about cracks and chipping. The aim of this research is to evaluate laser grooving & mechanical sawing parameters to eliminate sidewall void and avoid top-side chipping as well as peeling. An ultra-fast pico-second (ps) laser is applied to groove/singulate the 28-nanometer node wafer with Cu/low-k dielectric. A series of comprehensive parametric study on the recipes of input laser power, repetition rate, grooving speed, defocus amount and street index has been conducted to improve the quality of dicing process. The effects of the laser kerf geometry, grooving edge quality and defects are evaluated by using scanning electron microscopy (SEM) and focused ion beam (FIB). Experimental results have shown that the laser grooving technique is capable to improve the quality and yield issues on Cu/low-k wafer dicing process.

레이저를 이용한 웨이퍼 다이싱 특성 분석

  • 이용현;최경진;유승렬;양영진;배성창
    • 한국반도체및디스플레이장비학회:학술대회논문집
    • /
    • 한국반도체및디스플레이장비학회 2006년도 춘계학술대회
    • /
    • pp.251-254
    • /
    • 2006
  • In this paper, cutting qualifies and fracture strength of silicon dies by laser dicing are investigated. Laser micromachining is the non-contact process using thermal ablation and evaporation mechanisms. By these mechanisms, debris is generated and stick on the surface of wafer, which is the problem to apply laser dicing to semiconductor manufacture process. Unlike mechanical sawing using diamond blade, chipping on the surface and crack on the back side of wafer isn't made by laser dicing. Die strength by laser dicing is measured via the three-point bending test and is compared with the die strength by mechanical sawing. As a results, die strength by the laser dicing shows a decrease of 50% in compared with die strength by the mechanical sawing.

  • PDF

실리콘 웨이퍼에 2중 다이싱 공정의 도입이 반도체 디바이스의 T.C. 신뢰성에 미치는 영향 (Effect of Dual-Dicing Process Adopted for Silicon Wafer Separation on Thermal-Cycling Reliability of Semiconductor Devices)

  • 이성민
    • 마이크로전자및패키징학회지
    • /
    • 제16권4호
    • /
    • pp.1-4
    • /
    • 2009
  • 본 연구에서는 실리콘 웨이퍼에 2중 다이싱 공정의 적용이 리드-온-칩 패키지로 조립되는 반도체 디바이스의 T.C. ($-65^{\circ}C$에서 $150^{\circ}C$까지의 온도변화에 지배되는 신뢰성 실험) 신뢰성에 어떠한 영향을 미치는 지를 보여준다. 기존 싱글 다이싱 공정은 웨이퍼에서 분리된 디바이스의 테두리 부위가 다이싱으로 인해 기계적으로 손상되는 결과를 보였으나, 2중 다이싱 공정은 분리된 디바이스의 테두리 부위가 거의 손상되지 않고 보존되는 것을 확인할 수 있었다. 이는 2중 다이싱의 경우 다이싱 동안 웨이퍼의 전면에 도입된 노치부위가 선택적으로 파손되면서 분리된 디바이스의 테두리 부위를 보호하기 때문으로 해석된다. 온도변화 실험을 통해 2중 다이싱 공정의 도입이 단일 다이싱 공정에 비해 T.C. 신뢰성에서도 대단히 좋은 결과를 보인다는 것을 확인할 수 있었다.

  • PDF

Development of Semiconductor Packaging Technology using Dicing Die Attach Film

  • Keunhoi, Kim;Kyoung Min, Kim;Tae Hyun, Kim;Yeeun, Na
    • 센서학회지
    • /
    • 제31권6호
    • /
    • pp.361-365
    • /
    • 2022
  • Advanced packaging demands are driven by the need for dense integration systems. Consequently, stacked packaging technology has been proposed instead of reducing the ultra-fine patterns to secure economic feasibility. This study proposed an effective packaging process technology for semiconductor devices using a 9-inch dicing die attach film (DDAF), wherein the die attach and dicing films were combined. The process involved three steps: tape lamination, dicing, and bonding. Following the grinding of a silicon wafer, the tape lamination process was conducted, and the DDAF was arranged. Subsequently, a silicon wafer attached to the DDAF was separated into dies employing a blade dicing process with a two-step cut. Thereafter, one separated die was bonded with the other die as a substrate at 130 ℃ for 2 s under a pressure of 2 kgf and the chip was hardened at 120 ℃ for 30 min under a pressure of 10 kPa to remove air bubbles within the DAF. Finally, a curing process was conducted at 175 ℃ for 2 h at atmospheric pressure. Upon completing the manufacturing processes, external inspections, cross-sectional analyses, and thermal stability evaluations were conducted to confirm the optimality of the proposed technology for application of the DDAF. In particular, the shear strength test was evaluated to obtain an average of 9,905 Pa from 17 samples. Consequently, a 3D integration packaging process using DDAF is expected to be utilized as an advanced packaging technology with high reliability.

반도체 절단 공정의 웨이퍼 자동 정렬에 관한 연구 (A study on the automatic wafer alignment in semiconductor dicing)

  • 김형태;송창섭;양해정
    • 한국정밀공학회지
    • /
    • 제20권12호
    • /
    • pp.105-114
    • /
    • 2003
  • In this study, a dicing machine with vision system was built and an algorithm for automatic alignment was developed for dual camera system. The system had a macro and a micro inspection tool. The algorithm was formulated from geometric relations. When a wafer was put on the cutting stage within certain range, it was inspected by vision system and compared with a standard pattern. The difference between the patterns was analyzed and evaluated. Then, the stage was moved by x, y, $\theta$ axes to compensate these differences. The amount of compensation was calculated from the result of the vision inspection through the automatic alignment algorithm. The stage was moved to the compensated position and was inspected by vision for checking its result again. Accuracy and validity of the algorithm was discussed from these data.

PC 기반의 다이싱 공정 자동화 시스템 개발

  • 김형태;양해정;송창섭
    • 한국정밀공학회지
    • /
    • 제17권3호
    • /
    • pp.47-57
    • /
    • 2000
  • In this study, PC-based dicing machine and driving software were constructed for the purpose of automation of wafer cutting process. To automate the machine, hard automation including vision, loading, and software were considered in the development. Auto loading device and vision system were adopted for the increase of productivity, GUI software programmed for the expedient operation. The dicing machine is operated by the control algorithm and some parameters. It is verified that this kind of PC based automation has a great potential compared with the conventional dicing machine when applied to manufacturing some kinds of wafers as a test purpose.

  • PDF