• Title/Summary/Keyword: W 치환

Search Result 258, Processing Time 0.027 seconds

Ultrasonic pulse velocity analysis for high- temperature mechanical properties of high strength concrete replacing non-sintered hwangto (비소성 황토를 치환한 고강도 콘크리트의 고온 역학적 특성 평가를 위한 초음파 속도 분석)

  • Hong, Kil-Dong;Lim, Gguk-Jeong;Jang, Kil-San
    • Proceedings of the Korean Institute of Building Construction Conference
    • /
    • 2023.11a
    • /
    • pp.273-274
    • /
    • 2023
  • In this study, ultrasonic pulse velocity was analyzed to evaluate the high-temperature mechanical properties of concrete mixed with non-sintered hwangto. The W/B of the specimens was set at 0.41, the percentage of non-sintered hwangto admixture was set at two levels of 15,30%. The target temperature of the specimen is set to 6 levels of 20, 100, 200, 300, 500, 700 ℃, and the heating rate is set to 1℃/min. The result showed that the amount of non-sintered hwangto incorporated into the concrete tends to results in lower compressive strength. Ultrasonic pulse velocity showed similar trends, but differed in some areas.

  • PDF

A Study on the Estimation of Autogenous Shrinkage of High Strength Mortar incorporating Mineral Admixture by Equivalent Age Method (등가재령 방법에 의한 혼화재 치환 고강도 시멘트 모르타르의 자기수축 해석에 관한 연구)

  • Han, Min-Cheol
    • Journal of the Korea Institute of Building Construction
    • /
    • v.14 no.1
    • /
    • pp.110-117
    • /
    • 2014
  • The objective of this study is to investigate an effect of curing temperature on autogenous shrinkage of high strength cement mortar with 0.15 of W/B incorporating fly ash and silica fume in terms of equivalent age. The contents of fly ash and silica fume are varied from 10% to 30%. Non linear regression model applying equivalent age was used to estimate the autogenous shrinkage evolution. To obtain apparent activation energy($E_a$), setting time method by Pinto and existing method were calculated and compared respectively. Test results showed that use of silica fume increased autogenous shrinkage while use of fly ash decreased it. It was also found that poor agreements were obtained when $E_a$ by setting time was applied. But, application of existing $E_a$ resulted in a good agreement between calculated autogenous shrinkage and measured one.

Effect of Zeolite-X ion Exchange on Adsorption Isotherms of Gases (X형 제올라이트의 이온교환이 기체 평형흡착량에 미치는 영향)

  • Kim, K.I.;Kim, T.H.;Park, J.K.;Kim, J.W.;You, Y.J.;Cho, S.C.;Jin, M.J.
    • Applied Chemistry for Engineering
    • /
    • v.9 no.3
    • /
    • pp.317-321
    • /
    • 1998
  • X-type Zeolite for the gas separation was prepared by hydrothermal methods and the zeolite was ion-exchanged with KCl, $CaCl_2$, $YCl_3$ and $InCl_3$ in order to investigate the effect of ions on the properties of molecular sieves. Adsorption isotherms of $CO_2$ on ion exchanged X-type zeolites and those of $O_2$ and $N_2$ on the synthesized zeolite were measured at $25^{\circ}C$ using a volumetric method and the adsorption characteristics were compared with each other. Model parameters for the Langmuir, Freundlich and Toth equations were regressed for the measured adsorption isotherms. In order to confirm the applicability of the zeolite on $CO_2-PSA$ processes, breakthrough tests and process simulation were undertaken. It was found that the X-type zeolite could be a potential adsorbent in recovering $CO_2$ from flue gas.

  • PDF

A Study on the Properties of High Performance Concrete Using CSA Expansive Additives and Inorganic Admixtures (CSA계 팽창재 및 무기질 혼화재를 이용한 고성능 콘크리트의 특성에 관한 연구)

  • Han, Cheon-Goo;Bahn, Ho-Yong;Jun, Byung-Chea;Hong, Sang-Hee
    • Magazine of the Korea Concrete Institute
    • /
    • v.11 no.1
    • /
    • pp.141-148
    • /
    • 1999
  • Recently, high performance concrete developed has a good quality at fresh and hardened state, but high binder contents results in spending much money on manufacturing and many cracks by drying and autogenous shrinkage, Therefore, in this paper, not only prevention of cracks caused by drying and autogenous shrinkage, but improvement of quality and accomplishment of economy by applying F.A(fly ash), S.F(silica fume) and CSA(calcium sulfa aluminate) expansive additives as an inorganic admixtures in W/B 35% are discussed. According to the experimental results, when 5% of CSA expansive additives and 15:5(F.A:S.F)are replaced at unit cement content, high performance concrete with both good fluidity at fresh state and high compressive strength, compensation of drying and autogenous shrinkage at hardened state are accomplished.

A Study on the Effect of the Kinds and Replacement Ratios of Mineral Admixtures on the Development of Chloride Invasion Resistance Property of Concrete Immersed in Salt Water (혼화재 종류 및 치환율이 염수에 침지한 콘크리트의 내염성능 향상에 미치는 영향에 관한 연구)

  • Yoo Jae-Kang;Kim Dong-Seuk;Park Sang-Joon;Won Chul
    • Proceedings of the Korean Institute of Building Construction Conference
    • /
    • v.y2004m10
    • /
    • pp.71-76
    • /
    • 2004
  • This paper investigate that the effect of the concrete containing mineral admixtures(pozzolanic materials such as fly-ash, ground granulated blast-furnace slag, silica fume and meta kaolin) on the resistance properties to chloride ion invasion. The purposed testing procedure was applied to the concrete added mineral admixtures for $3\sim4$ replacement ratios under W/B ratios ranged from 0.40 to 0.55. Specimens were immersed in $3.6\%$ NaCl solution for 330 days, and penetration depth, water soluble chloride contents and acid soluble chloride contents were measured in 28, 91, 182 and 330 days. Then, diffusion coefficient were calculated using total chloride contents. As a results. the kinds of mineral admixture and replacement ratios had a great effect on the resistance property of the concrete to chloride ion invasion compared with the plain concrete. And the optimal replacement ratios of mineral admixture had a limitation for each admixtures. The amount of acid soluble chloride ions and water soluble chloride ions were varied with the kinds of mineral admixtures and the penetration depth from the concrete skin. Chloride diffusion coefficient of each concretes decreased with the time elapsed. and the diffusion coefficients of the concrete immersed salt water for 330 days had a establishment with the compressive strength measured before immersing.

  • PDF

An Experimental Study on Compression Strength and Carbonation Resistance for Ternary High-Performance Concrete with fly-sah, granulated blast furnace (플라이애쉬와 고로슬래그를 사용한 3성분계 고성능 콘크리트의 강도 및 촉진 중성화에 대한 실험적 고찰)

  • Kwon, Young-Rak;Kim, Hong-Sam;Lee, Chang-Young;Cheng, Hai-Moon;Ahn, Tae-Song
    • Proceedings of the Korea Concrete Institute Conference
    • /
    • 2008.04a
    • /
    • pp.445-448
    • /
    • 2008
  • It is essential that concrete component is made up with aggregate, cement and water. But today, Public concern is increasing of a variety structure and ocean environmental, resource recycle. Also, According to heat of hydration rising, Concrete is make a causative of concrete-crack. Concrete-crack cause a falling-off in quality of concrete. consequently, High-performance concrete is evaluated by concrete material properties and carbonation resistance with different admixture(fixing fly-ash 20%), granulated blast furnace slag replacement ratio (30%, 45%) different W/B (26%, 30%, 34%) and XRD(X-ray Diffraction) analysis.

  • PDF

Effect of Curing Condition on the Chloride ion Diffusion Coefficient in Concrete with GGBFS (양생조건이 고로슬래그 미분말을 혼입한 시멘트 콘크리트의 염화물이온 확산계수에 미치는 영향)

  • Park, Jang-Hyun;Lee, Han-Seung
    • Journal of the Korea Institute of Building Construction
    • /
    • v.19 no.5
    • /
    • pp.421-429
    • /
    • 2019
  • The changes in the resistance to chloride ingress of concrete using a ground granulated blast furnace slag (GGBFS) according to curing conditions were examined. The curing conditions were divided in air-dry curing and under-water curing. Three concrete mixures with the GGBFS replacement ratio of 0%(control), 30%, and 60% were prepared. For tests, evaluations of concrete compressive strength, and chloride ion diffusion coefficient were performed. As the GGBFS replacement ratio increased, the concrete compressive strength of the in air-dry cured specimens decreased compared to under-water cured specimens. When the chloride ion diffusion coefficient was measured, the chloride ion diffusion coefficient decreased as the GGBFS replacement ratio increased. However, the diffusion coefficient of the in air-dry cured specimen was increased up to 111% compared with the under-water cured specimen.

A New Sampling and SEC Method for Analysis of Underivatized Cellulose (셀룰로스의 분석을 위한 새로운 시료처리 및 크기배제크로마토그래피)

  • Lee, Seung Ho;Park, Hee Young
    • Journal of the Korean Chemical Society
    • /
    • v.42 no.2
    • /
    • pp.190-196
    • /
    • 1998
  • A new sampling and size exclusion chromatography (SEC) method for the analysis of underivatized cellulose are established. In this method, cellulose materials are first dissolved in N-methylmorpholine N-oxide (NMMO) and diluted by adding dimethyl sulfoxide (DMSO) to make the sample solutions of about 0.1% in 50/50 NMMO/DMSO (w/w). Sample solutions are analyzed using a glucose-treated divinylbenzene (DVB) SEC column and DMSO containing 0.05M LiBr and 2.5 blank as the eluant. The flow rate was constant at 1 mL/min and the whole SEC system including the column was heated at $80^{\circ}C$ to reduce the viscosity of DMSO. Addition of 0.05 M LiBr eliminated SEC baseline drifting, and addition of 2.5 blank seems to reduce the interaction between the sample and the column packing. SEC molecular weights were determined using a calibration curve constructed from a series of narrow pullulan standards, and they were used to measure the degree of degradation during two different pulp-to-sponge processings.

  • PDF

The application of Phosphate Magnesia Cement for Solidification of Soil (토양 고형화를 위한 인산염 마그네시아 시멘트 적용 연구)

  • Choi, Hun;Choi, Jun-Ok;Song, Myong-Shin;Moon, Chang-Yeol
    • Proceedings of the Korea Concrete Institute Conference
    • /
    • 2008.11a
    • /
    • pp.533-536
    • /
    • 2008
  • This study is the application of phosphate magnesia cement for solidification of soils. The object of the study is the application of the pavment of the farm roads. The new pavement method must be environmental, ecologic and durable. So, for solidification of farm road's soil, we use magnesia cement as quick setting, high strength materials. At magnesia phosphate cement, mixing ratio of mono ammonium phosphate and magnesia is 4:6 and w/b is 50 wt%, it show 14 MPa of compressive strength, and high hydration heat. Solidified soils that mixing ratios of magnesia cement and soil are 4:6 and 5:5 have very high durability for freezing and thawing.

  • PDF

Influence of Water-Binder Ratio and Expansion Admixture on Mechanical Properties of Strain-Hardening Cement-Based Composite with Hybrid Steel and Polyethylene Fibers (강섬유와 폴리에틸렌 섬유를 함께 혼입한 SHCC의 물결합재비와 팽창재 치환유무에 따른 역학적 특성)

  • Kim, Sung-Ho;Lee, Young-Oh;Kim, Hee-Jong;Yun, Hyun-Do
    • Journal of the Korea Concrete Institute
    • /
    • v.24 no.3
    • /
    • pp.233-240
    • /
    • 2012
  • Hybrid SHCC is being researched actively for its excellent performance in controlling macro and micro cracks using macro and micro fibers, respectively. However, a significant autogenous shrinkage of SHCC is expected since it possesses high unit cement volume in its mix proportion, resulting in autogenous shrinkage cracks. Therefore, this study was performed to evaluate mechanical property of shrinkage-reducing type hybrid SHCC mixed together with steel fiber and PE fiber with excellent micro/macro crack controlling performance. In order to evaluate mechanical property of shrinkage-reducing type hybrid SHCC, replacement ratios of 0% and 10% of expansive admixture and water to binder ratios of 0.45, 0.3, and 0.2 were considered as variables. Then, shrinkage, compressive, flexural, and direct tensile tests were performed. The test results showed that mix proportion with W/B 0.3 significantly improved mechanical performance by using 10% replacement of expansive admixture.