• Title/Summary/Keyword: Voltage-controlled frequency tuning

Search Result 121, Processing Time 0.031 seconds

Low Phase Noise Series-coupled VCO using Current-reuse and Armstrong Topologies

  • Ryu, Hyuk;Ha, Keum-Won;Sung, Eun-Taek;Baek, Donghyun
    • JSTS:Journal of Semiconductor Technology and Science
    • /
    • v.17 no.1
    • /
    • pp.42-47
    • /
    • 2017
  • This paper proposes a new series-coupled voltage-controlled oscillator (VCO). The proposed VCO consists of four current-reuse Armstrong VCOs (CRA-VCOs) coupled by four transformers. The series-coupling, current-reuse, and Armstrong topologies improve the phase noise performance by increasing the negative-Gm of the VCO core with half the current consumption of a conventional differential VCO. The proposed VCO consumes 6.54 mW at 9.78 GHz from a 1-V supply voltage. The measured phase noise is -115.1 dBc/Hz at an offset frequency of 1 MHz, and the FoM is -186.5 dBc/Hz. The frequency tuning range is from 9.38-10.52 GHz. The core area is $0.49mm^2$ in a $0.13-{\mu}m$ CMOS process.

A Study on the Improvement of Performance in VCO Using In/Out Common Frequency Tuning (입출력 공동 주파수 동조를 통한 VCO의 성능 개선에 관한 연구)

  • Suh, Kyoung-Whoan;Jang, Jeong-Seok
    • The Journal of Korean Institute of Electromagnetic Engineering and Science
    • /
    • v.21 no.5
    • /
    • pp.468-474
    • /
    • 2010
  • In this paper, a VCHO(Voltage Controlled Harmonic Oscillator) for K-band application has been designed and implemented. The proposed oscillator has a structure of two hair-pin resonators placed on input and output of active device. Using in/out common frequency tuning structure, the VCHO yields some advantages of the enhanced fundamental frequency suppression characteristic as well as the improved output power of second harmonic. According to implementation and measurement results, it was shown that a VCHO provides an output power of -2.41 dBm, a fundamental frequency suppression of -21.84 dBc, and phase noise of -101.44 dBc/Hz at 100 kHz offset. In addition, as for the bias voltage from 0 V to -10 V for the varactor diode, output frequency range of 10.58 MHz is obtained with a power variation of ${\pm}0.19\;dB$ over its frequency range.

A Design of LC-tuned Sinusoidal VCOs Using OTA-C Active Inductors

  • Chung, Won-Sup;Son, Sang-Hee
    • Journal of IKEEE
    • /
    • v.11 no.3
    • /
    • pp.122-128
    • /
    • 2007
  • Sinusoidal voltage-controlled oscillators (VCOs) based on Colpitts and Hartley oscillators are presented. They consist of a LC parallel-tuned circuit connected in a negative-feedback loop with an OTA-R amplifier and two diode limiters, where the inductor is simulated one realized with temperature-stable linear operational transconductance amplifiers (OTAs) and a grounded capacitor. Prototype VCOs are built with discrete components. The Colpitts VCO exhibits less than 1% nonlinearity in its current-to-frequency transfer characteristic from 4.2 to 21.7 MHz and ${\pm}$95 ppm/$^{\circ}C$ temperature drift of frequency over 0 to $70^{\circ}C$. The total harmonic distortion (THD) is as low as 2.92% with a peak-to-peak amplitude of 0.7 V for a frequency-tuning range of 10.8-32 MHz. The Hartley VCO has the temperature drift and THD of two times higher than those of the Colpitts VCO.

  • PDF

High Performance Adjustable-Speed Induction Motor Drive System Incorporating Sensorless Vector Controlled PWM Inverter with Auto-Tuning Machine-Operated Parameter Estimation Schemes

  • Soshin, Koji;Okamura, Yukiniko;Ahmed, Tarek;Nakaoka, Mutsuo
    • Journal of Power Electronics
    • /
    • v.3 no.2
    • /
    • pp.99-114
    • /
    • 2003
  • This paper presents a feasible development on a highly accurate quick response adjustable speed drive implementation fur general purpose induction motor which operates on the basis of sensorless slip frequency type vector controlled sine-wave PWM inverter with an automatic tuning machine parameter estimation schemes. In the first place, the sensorless vector control theory on the three-phase voltage source-fed inverter induction motor drive system is developed in slip frequency based vector control principle. In particular, the essential procedure and considerations to measure and estimate the exact stator and rotor circuit parameters of general purpose induction motor are discussed under its operating conditions. The speed regulation characteristics of induction motor operated by the three-phase voltage-fed type current controlled PWM inverter using IGBT's is illustrated and evaluated fur machine parameter variations under the actual conditions of low frequency and high frequency operations for the load torque. In the second place, the variable speed induction motor drive system, employing sensorless vector control scheme which is based on three -phase high frequency carrier PWM inverter with automatic toning estimation schemes of the temperature -dependent and -independent machine circuit parameters, is practically implemented using DSP-based controller. Finally, the dynamic speed response performances for largely changed load torque disturbances as well as steady state speed vs. torque characteristics of this induction motor control implementation are illustrated and discussed from an experimental point of view.

A Design of Voltage Controlled Oscillator and High Speed 1/4 Frequency Divider using 65nm CMOS Process (65nm CMOS 공정을 이용한 전압제어발진기와 고속 4분주기의 설계)

  • Lee, Jongsuk;Moon, Yong
    • Journal of the Institute of Electronics and Information Engineers
    • /
    • v.51 no.11
    • /
    • pp.107-113
    • /
    • 2014
  • A VCO (Voltage Controlled Oscillator) and a divide-by-4 high speed frequency divider are implemented using 65nm CMOS technology for 60GHz wireless communication system. The mm-wave VCO was designed by NMOS cross-coupled LC type using current source. The architecture of the divide-by-4 high speed frequency divider is differential ILFD (Injection Locking Frequency Divider) with varactor to control frequency range. The frequency divider also uses current sources to get good phase noise characteristics. The measured results show that the VCO has 64.36~67.68GHz tuning range and the frequency divider divides the VCO output by 4 exactly. The high output power of 5.47~5.97dBm from the frequency divider is measured. The phase noise of the VCO including the frequency divider are -77.17dBc/Hz at 1MHz and -110.83dBc/Hz at 10MHz offset frequency. The power consumption including VCO is 38.4mW with 1.2V supply voltage.

Microstrip Square Open Loop Metamaterial Resonator and Rat Race Coupler for Low Phase Noise Push-Push VCO

  • Choi, Jae-Won;Seo, Chul-Hun
    • Journal of electromagnetic engineering and science
    • /
    • v.11 no.4
    • /
    • pp.235-238
    • /
    • 2011
  • In this paper, a novel low phase noise voltage-controlled oscillator (VCO) using metamaterial structure and rat race coupler is presented for reducing the phase noise without the reduction of the frequency tuning range. The metamaterial structure has been realized by microstrip square open loop double split ring resonator (SRR). The rat race coupler shows slightly higher transmission compared to a Wilkinson combiner and is, therefore, used instead to improve the performances of VCO. By providing these unique modifications, the proposed push-push VCO has a phase noise of -126.30~-124.83 dBc/Hz at 100 kHz in the tuning range of 5.672~5.800 GHz.

A Design of 1.42 - 3.97GHz Digitally Controlled LC Oscillator (1.42 - 3.97GHz 디지털 제어 방식 LC 발진기의 설계)

  • Lee, Jong-Suk;Moon, Yong
    • Journal of the Institute of Electronics Engineers of Korea SD
    • /
    • v.49 no.7
    • /
    • pp.23-29
    • /
    • 2012
  • The LC-based digitally controlled oscillator (LC-DCO), a key component of the all digital phase locked loop (ADPLL), is designed using $0.18{\mu}m$ RFCMOS process with 1.8 V supply. The NMOS core with double cross-coupled pair is chosen to realize wide tuning range, and the PMOS varactor pair that has small capacitance of a few aF and the capacitive degeneration technique to shrink the capacitive element are adopted to obtain the high frequency resolution. Also, the noise filtering technique is used to improve phase noise performance. Measurement results show the center frequency of 2.7 GHz, the tuning range of 2.5 GHz and the high frequency resolution of 2.9 kHz ~7.1 kHz. Also the fine tuning range and the current consumption of the core could be controlled by using the array of PMOS transistors using current biasing. The current consumption is between 17 mA and 26 mA at 1.8V supply voltage. The proposed DCO could be used widely in various communication system.

Low-Power, All Digital Phase-Locked Loop with a Wide-Range, High Resolution TDC

  • Pu, Young-Gun;Park, An-Soo;Park, Joon-Sung;Lee, Kang-Yoon
    • ETRI Journal
    • /
    • v.33 no.3
    • /
    • pp.366-373
    • /
    • 2011
  • In this paper, we propose a low-power all-digital phase-locked loop (ADPLL) with a wide input range and a high resolution time-to-digital converter (TDC). The resolution of the proposed TDC is improved by using a phase-interpolator and the time amplifier. The phase noise of the proposed ADPLL is improved by using a fine resolution digitally controlled oscillator (DCO) with an active inductor. In order to control the frequency of the DCO, the transconductance of the active inductor is tuned digitally. The die area of the ADPLL is 0.8 $mm^2$ using 0.13 ${\mu}m$ CMOS technology. The frequency resolution of the TDC is 1 ps. The DCO tuning range is 58% at 2.4 GHz and the effective DCO frequency resolution is 0.14 kHz. The phase noise of the ADPLL output at 2.4 GHz is -120.5 dBc/Hz with a 1 MHz offset. The total power consumption of the ADPLL is 12 mW from a 1.2 V supply voltage.

A 2㎓, Low Noise, Low Power CMOS Voltage-Controlled Oscillator Using an Optimized Spiral Inductor for Wireless Communications (최적화된 나선형 인덕터를 이용한 이동 통신용 저잡음. 저전력 2㎓ CMOS VCO 설계에 관한 연구)

  • 조제광;이건상;이재신;김석기
    • Proceedings of the IEEK Conference
    • /
    • 1999.11a
    • /
    • pp.283-286
    • /
    • 1999
  • A 2㎓, low noise, low power CMOS voltage-controlled oscillator (VCO) with an integrated LC resonator is presented. The design of VCO relies heavily on the on-chip spiral inductor. An optimized spiral inductor with Q-factor of nearly 8 is achieved and used for the VCO. The simulated result of phase noise is as low as -l14 ㏈c/Hz at an offset frequency of a 600KHz from a 2㎓ carrier frequency. The VCO is tuned with standard available junction capacitors, resulting in an about 400MHz tuning range (20%). Implemented in a five-metal 0.25${\mu}{\textrm}{m}$ standard CMOS process, the VCO consumes only 2㎽ from a single 2.5V supply. It occupies an active area of 620${\mu}{\textrm}{m}$$\times$720${\mu}{\textrm}{m}$.

  • PDF

A Study on a hybrid Voltage Controlled Oscillator for Personal Communication System (PCS용 하이브리드 전압제어 발진기에 관한 연구)

  • Kim, Young-Gi;Kim, Hyeuk;Jung, Eu-Suk;Heak, Kyung-Sik;Lee, Jae-Hoon
    • Proceedings of the IEEK Conference
    • /
    • 1999.11a
    • /
    • pp.697-700
    • /
    • 1999
  • This Paper presents the design, fabrication, analysis of the measured date of a voltage controlled oscillator(VCO) for the application of Personal Communication Systems. Main VCO circuit consists of self biased emitter resonating circuit with microstrip line resonator on FR4 epoxy substrate. A varactor diode is used for 90MHz frequency tuning with center frequency of 1635MHz Phase noise of -114.67㏈C/Hz at 100KHz off set has been achieved with 3.3 V supply. The size of the fabricated VCO circuit is 1.25 cm$\times$ 1.25 cm.

  • PDF