• Title/Summary/Keyword: Voltage Multiplier

Search Result 124, Processing Time 0.037 seconds

A Design of Wide Input Range Multi-mode Rectifier for Wireless Power Transfer System (넓은 입력 범위를 갖는 무선 전력 전송용 다중 모드 정류기 설계)

  • Choi, Young-Su;Lee, Kang-Yoon
    • Journal of the Institute of Electronics Engineers of Korea SD
    • /
    • v.49 no.4
    • /
    • pp.34-42
    • /
    • 2012
  • In this paper, a wide-input range CMOS multi-mode rectifier for wireless power transfer system is presented. The output voltage of multi-mode rectifier is sensed by comparator and switches are controlled based on it. The mode of multi-mode rectifier is automatically selected by the switches among full-wave rectifier, 1-stage voltage multiplier and 2-stage voltage multiplier. In full-wave rectifier mode, the rectified output DC voltage ranges from 9 V to 19 V for a input AC voltage from 10 V to 20 V. However, the input-range of the multi-mode rectifier is more improved than that of the conventional full-wave rectifier by 5V, so the rectified output DC voltage ranges from 7.5 V to 19 V for a input AC voltage from 5 V to 20 V. The power conversion efficiency of the multi-mode rectifier is 94 % in full-wave rectifier mode. The proposed multi-mode rectifier is fabricated in a $0.35{\mu}m$ CMOS process with an active area of $2500{\mu}m{\times}1750{\mu}m$.

Design of High Performance 16bit Multiplier for Asynchronous Systems (비동기 시스템용 고성능 16비트 승산기 설계)

  • 김학윤;이유진;장미숙;최호용
    • Proceedings of the IEEK Conference
    • /
    • 1999.11a
    • /
    • pp.356-359
    • /
    • 1999
  • A high performance 16bit multiplier for asynchronous systems has been designed using asynchronous design methodology. The 4-radix modified Booth algorithm, TSPC (true single phase clocking) registers, and modified 4-2 counters using DPTL (differential pass transistor logic) have been used in our multiplier. It is implemented in 0.65${\mu}{\textrm}{m}$ double-poly/double-metal CMOS technology by using 6616 transistors with core size of 1.4$\times$1.1$\textrm{mm}^2$. And our design results in a computation rate exceeding 60MHz at a supply voltage of 3.3V.

  • PDF

A Peak Detector for Variable Frequency Three-Phase Sinusoidal Signals (가변주파수 3상 정현파 신호의 최대전압 검출기)

  • 김홍렬
    • Journal of Advanced Marine Engineering and Technology
    • /
    • v.23 no.2
    • /
    • pp.210-215
    • /
    • 1999
  • The proposed detector is consists of three-phase sinusoidal signal generator and peak detector. This peak detector can detect the peak voltage value at the state of variable frequency. In experi-ment three-phase sinusoidal signals are generated from D/A converter using IBM PC and deliv-ered to the peak detector. Each signals are squared by multiplier and summed up Peak value is the square root of summed value extracted by square root circuit.

  • PDF

Design of a Rectenna Using Dual Band/Dual Polarization Microstrip Patch Antenna (이중대역/이중편파 패치 안테나를 이용한 렉테나 설계)

  • Seo, Ki-Won;Kim, Jung-Han;Roh, Hyoung-Hwan;Seong, Yeong-Rak;Oh, Ha-Ryoung;Park, Jun-Seok
    • The Transactions of The Korean Institute of Electrical Engineers
    • /
    • v.59 no.12
    • /
    • pp.2268-2272
    • /
    • 2010
  • This letter presents that a rectenna can utilize more stable wireless power by using a new design dual band/dual polarization microstrip patch antenna and 2 stage voltage multiplier at 2.4 GHz band and 3.1 GHz band. The proposed antenna is a new microstrip patch antenna design to make impedance matching possible by using slotted capacitive coupling between the patch and $50\Omega$ feed line on a ground plane. Its advantage is that the size of the rectenna can be reduced by using $50\Omega$ feed line on the ground plane, which can be used efficiently. The dual band/dual polarization microstrip patch antenna shows circular polarization at 2.4 GHz band and linear polarization at 3.1 GHz band. Under -10 dB return loss, The dual band/dual polarization microstrip patch antenna obtains 340 MHz bandwidth as 2.23~2.57 GHz and 375 MHz bandwidth as 2.95~3.325 GHz. Also, 2 Stage Voltage multiplier is possible to operate at 2.4 GHz band and 3.1 GHz band. The designed retenna can usually obtain wireless power at both 3.1 GHz band, and 2.4 GHz band applications such as Wi-Fi, Bluetooth, Wireless LAN, etc. So more stable wireless power can be utilized at the same time.

Design of A CMOS Composite Cell Analog Multiplier (CMOS 상보형 구조를 이용한 아날로그 멀티플라이어 설계)

  • Lee, Geun-Ho;Choe, Hyeon-Seung;Kim, Dong-Yong
    • Journal of the Institute of Electronics Engineers of Korea SC
    • /
    • v.37 no.2
    • /
    • pp.43-49
    • /
    • 2000
  • In this paper, the CMOS four-quadrant analog multipliers for low-voltage low-power applications ate presented. The circuit approach is based on the characteristic of the LV(Low-Voltage) composite transistor which is one of the useful analog building blocks. SPICE simulations are carried out to examine the performances of the designed multipliers. Simulation results are obtained by 0.6${\mu}{\textrm}{m}$ CMOS parameters with 2V power supply. The LV composite transistor can easily be extended to perform a four-quadrant multiplication. The multiplier has a linear input range up to $\pm$0.5V with a linearity error of less than 1%. The measured -3㏈ bandwidth is 290MHz and the power dissipation is 373㎼. The proposed multiplier is expected to be suitable for analog signal processing applications such as portable communication equipment, radio receivers, and hand-held movie cameras.

  • PDF

A Study on the Realization of Broadband frequency Multiple VCO for Multi-Band Radar Detector (다중 대역 레이더 탐지기용 광대역 주파수 체배 VCO 구현에 관한 연구)

  • Park Wook-Ki;Kang Suk-Youb;Go Min-Ho;Park Hyo-Dal
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • v.30 no.10A
    • /
    • pp.971-978
    • /
    • 2005
  • In this paper, we design and fabricate a VCO(Voltage Controlled Oscillator) for radar detector of X/K/Ka band using frequency multiplier. The existing VCO operated in radar detector have many Problems such as narrow bandwidth, slow frequency variable rate, unstable of production due to high frequency. So we design and fabricate a VCO improved such problems using frequency multiplier. As a result of measure, investigated frequency multiple VCO show its output power 3.64 dBm at multiplied operating frequency 11.27 GHz and have wide frequency tuning range of 660 MHz by controlled voltage 0V to 4.50 V applied diode. And also its phase noise is -104.0 dEc at 1 MHz offset frequency so we obtain suitable performance for commercial use.

A Low-power, Low-noise DLL-based Frequency Multiplier for Reference Clock Generator (기준 클럭 발생을 위한 저 젼력, 저 잡음 DLL기반 주파수 체배기)

  • Kim, Hyung Pil;Hwang, In Chul
    • Journal of Korea Society of Industrial Information Systems
    • /
    • v.18 no.5
    • /
    • pp.9-14
    • /
    • 2013
  • This paper is designed frequency multiplier with low phase noise using DLL technique. The VCDL is designed using a differential structure to reduce common-mode noise. The proposed frequency multiplier is fabricated in a 65nm, 1.2V TSMC CMOS process, and the operating frequency range from 10MHz to 24MHz was measured. The SSB phase noise is measured to be -125dBc/Hz at 1MHz from 38.4MHz carrier. A total area of $0.032mm^2$were consumed in the chip, including the output buffer. Total current is 1.8mA at 1.2V supply voltage.

A Low-N Phase Locked Loop Clock Generator with Delay-Variance Voltage Converter and Frequency Multiplier (낮은 분주비의 위상고정루프에 주파수 체배기와 지연변화-전압 변환기를 사용한 클럭 발생기)

  • Choi, Young-Shig
    • Journal of the Institute of Electronics and Information Engineers
    • /
    • v.51 no.6
    • /
    • pp.63-70
    • /
    • 2014
  • A low-N phase-locked loop clock generator with frequency multiplier is proposed to improve phase noise characteristic. Delay-variance voltage converter (DVVC) generates output voltages according to the delay variance of delay stages in voltage controlled oscillator. The output voltages of average circuit with the output voltages of DVVC are applied to the delay stages in VCO to reduce jitter. The HSPICE simulation of the proposed phase-locked loop clock generator with a $0.18{\mu}m$ CMOS process shows an 11.3 ps of peak-to-peak jitter.

Design of a Low-Power Parallel Multiplier Using Low-Swing Technique (저 전압 스윙 기술을 이용한 저 전력 병렬 곱셈기 설계)

  • Kim, Jeong-Beom
    • The KIPS Transactions:PartA
    • /
    • v.14A no.3 s.107
    • /
    • pp.147-150
    • /
    • 2007
  • This paper describes a new low-swing inverter for low power consumption. To reduce a power consumption, an output voltage swing is in the range from 0 to VDD-2VTH. This can be done by the inverter structure that allow a full swing or a swing on its input terminal without leakage current. Using this low-swing voltage technology, we proposed a low-power 16$\times$16 bit parallel multiplier. The proposed circuits are designed with Samsung 0.35$\mu$m standard CMOS process at a 3.3V supply voltage. The validity and effectiveness are verified through the HSPICE simulation.. Compared to the previous works, this circuit can reduce the power consumption rate of 17.3% and the power-delay product of 16.5%.