• Title/Summary/Keyword: Volatile hydrocarbon

Search Result 86, Processing Time 0.03 seconds

Characteristics of Volatile Flavor Compounds of Fuji Apples by Different Extraction Methods (추출방법에 따른 후지사과의 휘발성 향기성분 특성)

  • Seo, Hye-Young;Lee, Hae-Chang;Kim, Yun-Sook;Choi, In-Wook;Park, Yong-Kon;Shin, Dong-Bin;Kim, Kyong-Su;Choi, Hee-Don
    • Journal of the Korean Society of Food Science and Nutrition
    • /
    • v.37 no.12
    • /
    • pp.1615-1621
    • /
    • 2008
  • The characteristics of volatile flavor compounds of Fuji apples were compared by different extraction methods for information leading to a natural fragrance development. The volatile flavor components of Fuji apples were extracted using simultaneous steam distillation and extraction (SDE), solvent extraction (SE), and solid-phase microextraction (SPME) methods and then analyzed by gas chromatograph-mass spectrometer. A total of 66, 32 and 54 components were identified in SDE, SE and SPME extracts, respectively. (E,E)-$\alpha$-Farnesene, hexanol, butanol, 2-methyl butanol, hexyl hexanoate, hexyl 2-methyl butanoate, hexyl butanoate, and butyl hexanoate were the major flavor components in the extracts by different methods, but the composition of volatiles in the extracts were different. Alcohols and hydrocarbons were the major functional groups in SDE and SE extract whereas esters and hydrocarbons were the major functional groups in SPME extracts. SPME was the most suitable method for analysis of fresh volatiles from Fuji apples.

Analysis of Mineral and Volatile Flavor Compounds in Pimpinella brachycarpa N. by ICP-AES and SDE, HS-SPME-GC/MS (ICP-AES와 SDE, HS-SPME-GC/MS를 이용한 참나물의 무기성분과 향기성분)

  • Chang, Kyung-Mi;Chung, Mi-Sook;Kim, Mi-Kyung;Kim, Gun-Hee
    • Journal of the Korean Society of Food Culture
    • /
    • v.22 no.2
    • /
    • pp.246-253
    • /
    • 2007
  • Mineral and volatile flavor compounds of Pimpinella brochycarpa N., a perennial Korean medicinal plant of the Umbelliferae family, were analyzed by inductively coupled plasma-atomic emission spectroscopy (ICP-AES) and simultaneous steam distillation extract (SDE)-gas chromatography mass spectrometry (GC/MS), head space solid phase micro-extraction (HS-SPME)-GC/MS. Mineral contents of the stalks and leaves were compared and the flavor patterns of the fresh and the shady air-dried samples were obtained by the electronic nose (EN) with 6 metal oxide sensors. Principal component analysis (PCA) was carried out using the data obtained from EN. The 1st principal values of the fresh samples have + values and the shady air-dried have - values. The essential oil extracted from the fresh and the shady air-dried by SDE method contain 58 and 31 flavor compounds. When HS-SPME method with CAR/PDMS fiber and PDMS fiber were used, 34 and 21 flavor compounds. The principal volatile components of Pimpinella brachycarpa N. were ${\alpha}$-selinene, germacrene D, and myrcene.

Study on Torrefaction Characteristics of Baggase (사탕수수 부산물의 반탄화 특성에 관한 연구)

  • Jeeban, Poudel;Kim, Won-Tae;Ohm, Tae-In;Oh, Sea Cheon
    • Korean Chemical Engineering Research
    • /
    • v.52 no.5
    • /
    • pp.672-677
    • /
    • 2014
  • Torrefaction is a thermal treatment process to pre-treat biomass at temperature of $200{\sim}300^{\circ}C$ under an inert atmosphere. It was known that torrefaction process strongly depended on the decomposition temperature of the lignocellulosic constituents in biomass. In this work, the torrefaction characteristics of baggase has been studied. This study focuses on the relation between the energy yields, heating values, gas emission, volatile and ash constituents with torrefaction temperatures and times. The activation energies of baggase torrefaction has been studied by using TGA (Thermogravimetric Analyzer). From this work, it was seen that ash constituents and heating values were increased with torrefaction temperature, while volatile constituents and energy yields decreased. It was also found that carbon monoxide containing oxygen were decomposed at a lower temperature than those of hydrocarbon compounds, $C_xH_y$.

TPH Removal of Oil-Contaminated Soil by Hot Air Sparging Process (고온 공기분사공정에 의한 유류오염대수층의 TPH 제거)

  • Lee, Jun-Ho;Park, Kap-Song
    • Journal of Korean Society on Water Environment
    • /
    • v.23 no.5
    • /
    • pp.665-675
    • /
    • 2007
  • In-situ Air Sparging (IAS, AS) is a remediation technique in which organic contaminants are volatilized from saturated zone to unsaturated layer. This study focuses on the removal and interaction of Volatile Organic Compounds (VOCs) and $CO_2$, and Total Petroleum Hydrocarbon (TPH) in saturated and unsaturated, and air space zone on the unsaturated soil surface. Soil sparging temperature of hot air has risen to $34.9{\pm}2.7^{\circ}C$ from $23.0{\pm}1.9^{\circ}C$ for 36 days. At the diffusing point, fluid TPH concentrations were reduced to 78.7% of the initial concentration in saturated zone when hot air was sparged. The TPH concentrations were decreased to 66.1% for room temperature air sparging. The amount of VOCs for hot air sparging system, in air space, was approximately 26% larger than constant air sparging system. The amount of $CO_2$ was 4,555 mg (in unsaturated zone) and 4,419 mg (in air space) when hot air was sparged was 3,015 mg (in unsaturated zone) and 3,634 mg (in air space) for room air temperature in the $CO_2$ amount. The removals of VOCs and biodegradable $CO_2$ through the hot air sparging system (modified SVE) were more effective than the room temperature air sparging. The regression equation were $Y=976.4e^{-0.015{\cdot}X}$, $R^2=0.98$ (hot air sparging) and $Y=1055e^{-0.028{\cdot}X}$, $R^2=0.90$ (room temperaure air sparging). Estimated remediation time was approximately 500 days, if final saturated soil TPH concentration was set to 1.2 mg/L application of tail effect.

Rapid Measurement of VOC Using an Analysis of Soil-Gas (Soil-Gas의 분석을 이용한 휘발성 유기화합물 오염도 신속측정)

  • 김희경;조성용;황경엽
    • Journal of Korea Soil Environment Society
    • /
    • v.3 no.1
    • /
    • pp.3-9
    • /
    • 1998
  • This paper presents soil-gas surveying technique to delineate an area contaminated with volatile organic compounds, which are common solvents and constituents of gasoline. The sampling method of soil-gas surveying is 1) grab sampling, which actively takes sample using a pump, or 2) passive sampling, which takes sample through diffusion in a trap filled with absorbent. The grab sampling shows the level of contamination at a certain location at a certain time, while the passive sampling shows the change in the contamination at a certain location. The analysis of soil gas can be performed with 1) a small portable detectors such as PID (photoionization detector) or FID (flame-ionization detector) to measure the total hydrocarbon in the soil gas, 2) a gas detector tube, which is filled with indicator reagents and changes its color with concentrations of the gas of interest, or 3) a portable GC (gas chromatograph), which can analyze different compounds simultaneously. The soil-gas surveying technique is a much less expensive method to investigate area contaminated volatile organic compounds and thus can be used as a screening tool to identify an area, which needs to be further investigated.

  • PDF

A Case of Trichloroethylene Poisoning (삼염화에틸렌 중독 1 례)

  • Jean, Jae-Cheon;Jang, Sung-Won;Yang, Seung-Joan;Lee, Jae-Won;Jin, Sang-Chan;Joo, Myeong-Don;Choi, Woo-Ik
    • Journal of The Korean Society of Clinical Toxicology
    • /
    • v.5 no.1
    • /
    • pp.61-66
    • /
    • 2007
  • Trichloroethylene (TCE) is an unsaturated chlorinated hydrocarbon in the form of a colorless, volatile liquid, which is used as an industrial organic solvent for spot removal and for metal degreasing. In general, the primary complications of TCE poisoning result from involvement of the central nervous and respiratory systems, including aspiration pneumonia. A case is reported of a 54-year-old man who presented in a comatose state after accidental ingestion of 100 ml of TCE, and who recovered after conservative treatment and mechanical ventilation. We discuss this case and present a literature review.

  • PDF

A Study of Odorants and Volatiles Released from Pork Belly Meat When Treated by Different Cooking Methods (삼겹살 구이로부터 발생하는 유해물질의 특성 연구)

  • Kim, Bo-Won;Kim, Ki-Hyun;Kim, Yong-Hyun;Ahn, Jeong-Hyeon
    • Journal of Korean Society for Atmospheric Environment
    • /
    • v.30 no.3
    • /
    • pp.211-222
    • /
    • 2014
  • Pork belly meat is one of the most preferred food items for many Korean people. The odorants released from cooking of pork belly meat were measured by three kinds of cooking methods (Charcoal-grill (C), Electric Pan (E), and Gas burner-pan (G)). A total of 16 target compounds including carbonyl compounds, volatile organic compounds, and poly aromatic hydrocarbon were selected and analyzed for comparative purposes. Their emission concentrations were quantified using HPLC-UV, GC-MS, GC-TOF-MS, etc. The gas samples collected by Charcoal-grill cooking showed generally enhanced concentrations of most target compounds among all three kinds of cooking methods. In Charcoal-grill, concentration of benzene, formaldehyde and pyrene went up to 543, 516, and 402 ppb, respectively. It the results are compared in terms of the sum of odor intensity, the highest value (4.25) was also seen from Charcoal-grill. The results of this study confirm that the significantly reduced emission of harmful pollutants can be attained, it pork belly meat is cooked by the Gas or electric pan instead of Charcoal-grill.

Qualitative, Quantitative Analysis and Chiral Characterization of the Essential Oils of Juniperus phoenicea L. and Juniperus oxycedrus L.

  • Dahmane, Dahmane;Dahmane, Fahima Abdellatif;Dob, Tahar;Chelghoum, Chaabane
    • Natural Product Sciences
    • /
    • v.26 no.1
    • /
    • pp.97-107
    • /
    • 2020
  • Isolation of oils from leaves of Juniperus phoenicea and Juniperus oxycedrus was obtained by steam distillation extraction method. The compositions of essential oils (EOs) were studied by means of GC-MS and GC-FID, using the internal standard method and relative response factors. Around ninety eight compounds were determined in total, representing 98.25 g/100 g of EO of J. phoenicea and 98.48 g/100 g of EO of J. oxycedrus, respectively. The volatile leaf oils were dominated by the terpenic hydrocarbon fractions (79.87 g/100 g) and (61.27 g/100 g) characterized by high contents of α-pinene (64.6 g/100 g) and (54.0 g/100 g) in J. phoenicea and J. oxycedrus, respectively, as the main component. Also, the enantiomeric distribution of α-pinene, sabinene, camphene, δ-3-carene, β-pinene, limonene, linalool, terpinen-4-ol, bornyl acetate, and borneol in both oils is presented for the first time.

Separation of Non-Volatile Compounds Unsuitable for GC Using Supercritical Fluid as Mobile Phase (초임계 유체를 이동상으로 사용함으로써 기체 크로마토그래피로 분리하기 힘든 비휘발성 화합물들의 분리)

  • Pyo, Tong Jin;Kim, Hoon Ju
    • Analytical Science and Technology
    • /
    • v.5 no.2
    • /
    • pp.153-158
    • /
    • 1992
  • In this work, we developed supercritical fluid chromatographic methods for the samples which are difficult to analyze with conventional GC or HPLC. Long-chain Hydrocarbons, mink oils and soybean oils unsuitable for GC because of their low volatility or limited thermal stability were separated by SFC due to the high solvating properties of supercritical carbon dioxide fluids. In our research, a new method for the analysis of polar fatty acids and pesticides was developed. This method should be used to overcome problems with polar samples in SFC.

  • PDF

Pyrolysis/GC-Mass Spectrometry Analysis for Rapid Identification of Volatile Flavour Compounds of Accelerated Ripened Cheddar Cheese and Enzyme-Modified Cheese (단기숙성치즈 및 EMC 치즈의 휘발성 풍미성분 신속분석방법으로서 Pyrolysis/GC-Mass Spectrometry의 이용)

  • ;;;S.S.B. Haileselassie;V.A. Yaylayan;B.H. Lee
    • Food Science of Animal Resources
    • /
    • v.21 no.3
    • /
    • pp.256-264
    • /
    • 2001
  • Pyrolysis/GC-mass spectrometry(Hewlet-Packard 5890GC/mass selective detector, 5971 BMSD), interfaced to a CDS Pyroprobe 1500 was optimized for rapid analysis of flavour compounds in Cheddar cheese. Twenty flavour compounds, including aldehydes(4), ketones(4), fatty acids(10), alcohol(1), and hydrocarbon(1), were identified from Cheddar cheeses. In total, Twenty-three flavour compounds aldehydes(2), ketones(8), alcohols(3), fatty acids(7), lactone(1), benzene derivative(1) and amide(1) were identified from two samples of accelerated-ripened Cheddar cheese treated with the proteolytic enzymes of Lactobacillus casei LGY. In total, Twenty-one flavour compounds; aldehydes(2), ketones(5), alcohols(2), fatty acids(11), and lactone(1) were identified from enzyme-modified cheese(EMC) treated with the combination of the proteolytic enzymes of Lactobacillus casei LGY and commercial endopeptidase or lipase. However, All the flavour compounds identified by pyrolysis/GC/MS in samples of ARC and EMC were not determined whether they are recognized as typical Cheddar flavour or not. More studies were requested on the development of methods for a rapid and convienent analysis of dairy fermented products using pyrolysis/GC-mass spectrometry.

  • PDF