DOI QR코드

DOI QR Code

Study on Torrefaction Characteristics of Baggase

사탕수수 부산물의 반탄화 특성에 관한 연구

  • Jeeban, Poudel (Division of Mechanical and Automotive Engineering, Kongju National University) ;
  • Kim, Won-Tae (Division of Mechanical and Automotive Engineering, Kongju National University) ;
  • Ohm, Tae-In (Department of Civil and Environmental Engineering, Hanbat National University) ;
  • Oh, Sea Cheon (Department of Environmental Engineering, Kongju National University)
  • ;
  • 김원태 (공주대학교 기계자동차공학부) ;
  • 엄태인 (한밭대학교 건설환경공학과) ;
  • 오세천 (공주대학교 환경공학과)
  • Received : 2014.02.19
  • Accepted : 2014.04.12
  • Published : 2014.10.01

Abstract

Torrefaction is a thermal treatment process to pre-treat biomass at temperature of $200{\sim}300^{\circ}C$ under an inert atmosphere. It was known that torrefaction process strongly depended on the decomposition temperature of the lignocellulosic constituents in biomass. In this work, the torrefaction characteristics of baggase has been studied. This study focuses on the relation between the energy yields, heating values, gas emission, volatile and ash constituents with torrefaction temperatures and times. The activation energies of baggase torrefaction has been studied by using TGA (Thermogravimetric Analyzer). From this work, it was seen that ash constituents and heating values were increased with torrefaction temperature, while volatile constituents and energy yields decreased. It was also found that carbon monoxide containing oxygen were decomposed at a lower temperature than those of hydrocarbon compounds, $C_xH_y$.

반탄화는 $200{\sim}300^{\circ}C$의 불활성분위기에서 바이오매스를 전처리하는 열처리공정이며 이러한 반탄화 공정은 바이오 매스에 함유된 섬유질성분의 분해온도에 크게 영향을 받은 것으로 알려져 있다. 본 연구에서는 사탕수수 부산물의 반탄화 특성에 관한 연구를 수행하였으며 반탄화 온도 및 반탄화 시간에 따른 에너지 수율, 발열량 및 발생가스 그리고 가연분과 회분의 관계에 중점을 두었다. 또한 본 연구에서는 TGA(Thermogravimetric Analyzer)를 이용한 사탕수수 부산물의 반탄화 반응에 대한 활성화 에너지의 변화도 함께 고찰하였다. 본 연구로부터 반탄화 온도에 따라 회분 및 발열량은 증가하였으나 가연분 및 에너지 수율은 감소하였으며 또한 산소성분을 함유한 일산화탄소가 탄화수소 화합물, $C_xH_y$ 보다 더 낮은 온도에서 분해되기 시작하는 것을 확인할 수 있었다.

Keywords

References

  1. Shuit, S., Tan, K., Lee, K. and Kamaruddin, A., "Oil Palm Biomass as a Sustainable Energy Source: A Malaysian Case Study," Energy, 34, 1225-1235(2009). https://doi.org/10.1016/j.energy.2009.05.008
  2. Zhang, L., Xu, C. C. and Champagne, P., "Overview of Recent Advantage in Thermo-chemical Conversion of Biomass," Energy Convers. Manage., 51, 969-982(2010). https://doi.org/10.1016/j.enconman.2009.11.038
  3. Werther, J., Saenger, M., Hartge, E., Ogada, T. and Siagi, Z., "Combustion of Agricultural Residues," Prog. Energy Combust. Sci., 26, 1-27(2000). https://doi.org/10.1016/S0360-1285(99)00005-2
  4. Goyal, H., Seal, D. and Saxena, R., "Bio-fuels from Thermochemical Conversion of Renewable Sesources: A review," Renewable and Sustainable Energy Reviews, 12, 504-517(2008). https://doi.org/10.1016/j.rser.2006.07.014
  5. Prompubess, C., Mekasut, L., Piumsomboon P. and Kuchontara, P., "Co-combustion of Coal and Biomass in a Circulating Fluidized Bed Combustor," Korean J. Chem. Eng., 24, 989-995(2007). https://doi.org/10.1007/s11814-007-0109-4
  6. Prins, M. J., Ptasinski, K. J. and Janssen, F. J. J. G., "Torrefaction of Wood. Part 2. Analysis of Products," J. Anal. Appl. Pyrolysis, 77, 35-40(2006). https://doi.org/10.1016/j.jaap.2006.01.001
  7. Arias, B., Pevida, C., Fermoso, J., Plaza, M. G., Rubiera, F. and Pis, J. J., "Influence of Torrefaction in the Grindability and Reactivity of Woody Biomass," Fuel Process. Technol., 89, 169-175(2008). https://doi.org/10.1016/j.fuproc.2007.09.002
  8. Chen, W., Hsu, H., Lu, K., Lee, W. and Lin, T., "Thermal Pretreatment of Wood (Lauan) Block by Torrefaction and Its Influence on the Properties of the Biomass," Energy, 36, 3012-3021(2011). https://doi.org/10.1016/j.energy.2011.02.045
  9. Uemura, Y., Omar, W. N., Tsutsui, T. and Yusup. S. B., "Torrefaction of Oil Palm Wastes," Fuel, 90, 2585-2591(2011). https://doi.org/10.1016/j.fuel.2011.03.021
  10. Van der Stelt, M., Gerhauser, H., Kiel, J. and Ptasinski, K., "Biomass Upgrading by Torrefaction for Production of Biofuels: A Review," Biomass Bioenergy, 35, 3748-3762(2011).
  11. Couhert, C., Salvador, S. and Commandre, J., "Impact of Torrefaction on Syngas Production from Wood," Fuel, 88, 2286-2290(2009). https://doi.org/10.1016/j.fuel.2009.05.003
  12. Chen, W. and Kuo, P., "A Study on Torrefaction of Various Biomass Materials and Its Impact on Lignocellulosic Structure Simulated by a Thermogravimetry," Energy, 35, 2580-2586(2010). https://doi.org/10.1016/j.energy.2010.02.054
  13. Repellin, V., Govin, A., Rolland, M. and Guyonnet, R., "Modelling Anhydrous Weight Loss of Wood Chips during Torrefaction in a Pilot Kiln," Biomass Bioenergy, 34, 602-609(2010). https://doi.org/10.1016/j.biombioe.2010.01.002
  14. Lee, M. S., Jeong, G., Jung, S.-J. and Lee, K.-Y., "The Fuelization Study on the Oil Palm Frond Through Torrefaction," Korean Chem. Eng. Res., 51, 465-469(2013). https://doi.org/10.9713/kcer.2013.51.4.465
  15. Lee, J.-W., Kim, Y.-H., Lee, S.-M. and Lee, H.-Y., "Torrefaction Characteristics of Wood Chip for the Production of High Energy Density Wood Pellet," Korean Chem. Eng. Res., 50, 385-389(2012). https://doi.org/10.9713/kcer.2012.50.2.385
  16. Horowitz, H. H. and Metzger G., "A New Analysis of Thermogravimetric Traces," Anal. Chem., 35, 1464-1468(1963). https://doi.org/10.1021/ac60203a013
  17. Cooney, J. D., Day, M. and Wiles, D. M., "Thermal Decomposition of Ploy(ethylene Terephthalate): A Kinetic Analysis of Thermogravimetric Data," J. Appl. Polym. Sci., 28. 2887-2902(1983). https://doi.org/10.1002/app.1983.070280918

Cited by

  1. Thermal Degradation Behavior of Biomass Depending on Torrefaction Temperatures and Heating Rates vol.44, pp.5, 2016, https://doi.org/10.5658/WOOD.2016.44.5.685
  2. 바이오매스 연료로서 미활용 농업부산물의 반탄화 특성 vol.59, pp.5, 2014, https://doi.org/10.5389/ksae.2017.59.5.017