• Title/Summary/Keyword: Visual receptor

Search Result 50, Processing Time 0.027 seconds

Magnesium Sulfate Attenuate Opioid Tolerance in Patients undergoing Major Abdominal Surgery (주요 복강수술 환자에서 황산 마그네슘의 아편유사제 내성 감소에 대한 효과)

  • Jang, Mi Soon;Son, Yong;Lee, Cheol;Lee, Ju Hwan;Park, Jeong Hyun;Lee, Myeong Jong
    • The Korean Journal of Pain
    • /
    • v.22 no.1
    • /
    • pp.58-64
    • /
    • 2009
  • Background: Magnesium is a noncompetitive antagonist of the N-methyl-D aspartate (NMDA) receptor. Magnesium is thought to be involved in opioid tolerance by way of inhibiting calcium entry into cells. Methods: The patients were randomly assigned to three groups according to the anesthetic regimens: Group M received magnesium sulfate and Group C received saline intravenously under remifentanil-based anesthesia. Group S received saline intravenously under sevoflurane based anesthesia in place of remifentanil. The patients in the group M received 25% magnesium sulfate 50 mg/kg in 100 ml of saline, and those patients in groups C and S received an equal volume of saline before induction of anesthesia; this was followed by 10 mg/kg/h infusion of either magnesium sulfate (group M) or an equal volume of saline (groups C and S) until the end of surgery. Pain was assessed on a visual analog scale at 1, 6, 12, 24, and 36 hours after the operation. The time to the first postoperative analgesic requirement and the cumulative analgesic consumption were evaluated in the three groups. Results: The visual analog scales for pain and the cumulative analgesic consumption were significantly greater in group C than in other groups. The time to first postoperative analgesic requirement was significantly shorter in group C than that in the other groups. There were no differences between group M and S for side effects. Conclusions: A relatively high dose and continuous remifentanil infusion is associated with clinically relevant evidence of acute opioid tolerance. NMDA-receptor antagonist, magnesium sulfate as an adjuvant analgesic prevents opioid tolerance in patients who are undergoing major abdominal surgery under high dose and continuous remifentanil infusion-based anesthesia.

A Study on Information Transmission Processing Types of Exhibition Medium per Sensory receptor - Focus on National Museum of Nature and Science's Global Gallery, Tokyo - (감각수용기 종류에 따른 전시매체 분석과 유형에 관한 연구 - 동경 국립과학박물관 지구관을 중심으로 -)

  • Jeong, Hye-In;Lim, Che-Zinn
    • Korean Institute of Interior Design Journal
    • /
    • v.22 no.1
    • /
    • pp.291-298
    • /
    • 2013
  • A science museum responds independently based on the exhibits and exhibition environments as the visitors are different in purposes, interests and demands. Therefore a science museum should be designed keeping it in mind that there are various ways for visitors to perceive and use the exhibition spaces and exhibits. The purpose of this study is to compare and analyze the characteristics of sensory receptors for the exhibits in National Museum of Nature and Science's Global Gallery, Tokyo, in terms of information transmission and to identify the nature of exhibit medium that can affect the perception and recognition of the exhibits by visitors. Through these 9 sensory receptors, human recognizes first with visual, auditory and olfactory senses and reacts using vestibular organ, proprioceptor (stretch), tangoreceptor, themoreceptor, taste and olfactory senses. Human uses these information processing to recolonize the external environment. This process is similar to the visitor's information transmission process for the exhibition medium. By dividing the analysis results per exhibition theme and developing the information transmission processing types per sensory receptor, we could understand that the distribution conditions are closely connected with the composition of the exhibition scenario in the exhibtion area. Especially, the understanding of how the information transmission is made through sensory receptors could can be the criteria that determines on the factors that can identify the exhibition purposes of a science museum which are eduction and understanding.

Expression Analysis of Visual Arrestin gene during Ocular Development of Olive Flounder (Paralichthys olivaceus)

  • Yang, Hyun;Lee, Young Mee;Noh, Jae Koo;Kim, Hyun Chul;Park, Choul-Ji;Park, Jong-Won;Hwang, In Joon;Kim, Sung Yeon;Lee, Jeong-Ho
    • Development and Reproduction
    • /
    • v.17 no.3
    • /
    • pp.231-240
    • /
    • 2013
  • Olive flounder (Paralichthys olivaceus) is one of the commercial important flatfish species in Korea. The ocular signal transduction pathway is important in newly hatched flounders because it is closely involved in the initial feeding phase thus essential for survival during the juvenile period. However, the study of gene expression during ocular development is incomplete in olive flounder. Therefore we examined the expression analysis of specifically induced genes during the development of the visual system in newly hatched flounders. We searched ocular development-involved gene in the database of expressed sequence tags (ESTs) from olive flounder eye and this gene similar to arrestin with a partial sequence homology. Microscopic observation of retinal formation corresponded with the time of expression of the arrestin gene in the developmental stage. These results suggest that arrestin plays a vital role in the visual signal transduction pathway of the retina during ocular development. The expression of arrestin was strong in the ocular system during the entirety of the development stages. Our findings regarding arrestin have important implications with respect to its biological role and evolution of G-protein coupled receptor (GPCR) signaling in olive flounder. Further studies are required on the GPCR-mediated signaling pathway and to decipher the functional role of arrestin.

Visual expression technique analysis of motion graphic by media for emotion communication (감성전달을 위한 매체별 모션그래픽의 시각적 표현기법 분석)

  • Yun, Hwang-Rok;Kyung, Byung-Pyo;Lee, Dong-Lyeor
    • Proceedings of the Korea Contents Association Conference
    • /
    • 2009.05a
    • /
    • pp.921-926
    • /
    • 2009
  • After the scientific development of human history, numerous images have been developed and expanded in digital media as a communication tools. Image digital media make communication closer between sender and receptor. The image digital media which has been developed with the change of technology and media transformation have shortened visual information transportation and the time as well by combining the sense of visual and audio. Motion graphic field has been emerged as the type of image digital media development. The development of motion graphic make possible for the expressive effect and dynamic image technique which is impossible by the existing media type. Especially, it is applied to various field such as the title of movie, TV program, and advertise or music video etc. These image expression techniques are stimulating acceptor's emotion to take a role of emotion communication function also. This study aims to find the characteristics motion graphic of which how influence as an effective communication tool as important role to the receptors, and the examine the effect and application of motion graphic to the receptors as a emotion communication tool by case study.

  • PDF

Visual Detection of Di-and Tri-phosphates in Aqueous Solution of Neutral pH

  • Han, Min-Su;Kim, Dong H.
    • Bulletin of the Korean Chemical Society
    • /
    • v.25 no.8
    • /
    • pp.1151-1155
    • /
    • 2004
  • The chemosenssor that consists of [$Zn_2$(1,3-bis[bis(2-pyridylmethyl)aminomethyl]benzene)]$^{4+}$ (receptor) and pyrecatechol violet (signaling unit) detects with naked eyes di- and tri-phosphates conjugated to nucleosides or in free forms. The blue color of the aqueous solution (pH 7.0) of the sensor turns to yellow upon exposing to the analytes.

Chemical Modification of Transducin with Dansyl Chloride Hinders Its Binding to Light-activated Rhodopsin

  • Kosoy, Ana;Moller, Carolina;Perdomo, Deisy;Bubis, Jose
    • BMB Reports
    • /
    • v.37 no.2
    • /
    • pp.260-267
    • /
    • 2004
  • Transducin (T), the heterotrimeric guanine nucleotide binding protein in rod outer segments, serves as an intermediary between the receptor protein, rhodopsin, and the effector protein, cGMP phosphodiesterase. Labeling of T with dansyl chloride (DnsCl) inhibited its light-dependent guanine nucleotide binding activity. Conversely, DnsCl had no effect on the functionality of rhodopsin. Approximately 2-3 mol of DnsCl were incorporated per mole of T. Since fluoroaluminate was capable of activating DnsCl-modified T, this lysine-specific labeling compound did not affect the guanine nucleotide-binding pocket of T. However, the labeling of T with DnsCl hindered its binding to photoexcited rhodopsin, as shown by sedimentation experiments. Additionally, rhodopsin completely protected against the DnsCl inactivation of T. These results demonstrated the existence of functional lysines on T that are located in the proximity of the interaction site with the photoreceptor protein.

Study on the Fine Structure of Retina of Anterior Lateral Eyes in Pardosa astrigera L. Koch (Aranea: Lycosidae) (별늑대거미 (Pardosa astrigera L. Koch) 전측안(前側眼) 망막(綱膜)의 미세구조(微細構造)에 관한 연구)

  • Jeong, Moon-Jin;Moon, Myung-Jin
    • Applied Microscopy
    • /
    • v.24 no.3
    • /
    • pp.1-9
    • /
    • 1994
  • Pardosa astrigera possessed eight eyes arranged in three rows on the frontal carapace. A pair of small anterior lateral eyes (ALE) flanked each side by an anterior median eyes (AME) lay along the anterior margin that was situated on the anterior row of clypeus. The anterior lateral eye was composed of cornea, vitreous body, and retina. Cornea was made up mainly of exocuticle lining the cuticle. Lens in anterior lateral eye was biconvex type which bulged into the cavity of the eyecup. Outer and inner central region of lens were approximately spherical with radius of curvature $5.6{\mu}m$ and $12.5{\mu}m$, respectly. Vitreous body formed a layer between the cuticular lens and retina. They formed biconcave shape. Retina of the anterior lateral eyes was composed of three types of cells: visual cells, glia cells, and pigment cells. The visual cells were unipolar neuron, as were the receptor of the posterior lateral eye. But cell body was unique to the anterior lateral eyes. They were giant cell, relatively a few in number, and under the layer of vitreous bodies. Each visual cell healed rhabdomeres for a short stretch beneath the cell body. Rhabdomes were irregulary pattern in retina and electron dense pigment granules scattered between the rhabdomes. Glia cell situated at the cell body of visual cell and glia cell process reached to rhabdomere portion. Below the rhabdome, tapetum were about $30{\mu}m$ distance from lens, which composed of 4-5 layers. It was about $25{\mu}m$ length that intermediate segment of distal portion of visual cell. Electron dense pigment granules between the intermediate segment were observed.

  • PDF

RNA-Seq Transcriptome Analysis of the Cutlass Fish Reveals Photoreceptors Gene Expression in Peripheral Tissues (RNA-Seq transcriptome 분석을 통한 갈치 광수용체 유전자 탐색 및 mRNA 조직발현)

  • Hyeon, Ji-Yeon;Kim, Mun-Kwan;Lim, Bong-Soo;Byun, Jun-Hwan;Moon, Ji-Sung;Kang, Hyeong-Cheol;Hur, Sung-Pyo;Oh, Seong-Rip
    • Ocean and Polar Research
    • /
    • v.39 no.2
    • /
    • pp.149-158
    • /
    • 2017
  • The opsin family of light sensitive proteins family makes up are the universal photoreceptor molecules of all visual systems in the vertebrates including teleosts. They can change their conformation from a resting state to a signaling state upon light absorption, which activates the G-protein coupled receptor, thereby resulting in a signaling cascade that produces physiological responses. However, this species is poorly characterized at molecular level due to little sequence information available in public databases. We have investigated the opsin family of nocturnal cutlass fish using the whole transcriptome sequencing method. The opsin genes were cloned and its expression in the tissues and organs were examined by qPCR. We cloned 6 opsin genes (RRH, Opn4, Rh1, Rh2, VA-opsin, and Opn3) in retina and brain tissue. It contained the seven presumed transmembrane domains that are characteristic of the G-protein-coupled receptor family. However, short wavelength sensitive pigment (SWS) and long wavelength sensitive pigment (LWS) were not detected in this study. The mRNA expression of the 6 photoreceptor genes were detected in retina and peripheral tissue. Our studies will lead to further investigation of the photic entrainment mechanism at molecular and cellular levels in cutlass fish and can be used in comparative studies of other fishes.

Beyond Clot Dissolution; Role of Tissue Plasminogen Activator in Central Nervous System

  • Kim, Ji-Woon;Lee, Soon-Young;Joo, So-Hyun;Song, Mi-Ryoung;Shin, Chan-Young
    • Biomolecules & Therapeutics
    • /
    • v.15 no.1
    • /
    • pp.16-26
    • /
    • 2007
  • Tissue plasminogen activator (tPA) is a serine protease catalyzing the proteolytic conversion of plasminogen into plasmin, which is involved in thrombolysis. During last two decades, the role of tPA in brain physiology and pathology has been extensively investigated. tPA is expressed in brain regions such as cortex, hippocampus, amygdala and cerebellum, and major neural cell types such as neuron, astrocyte, microglia and endothelial cells express tPA in basal status. After strong neural stimulation such as seizure, tPA behaves as an immediate early gene increasing the expression level within an hour. Neural activity and/or postsynaptic stimulation increased the release of tPA from axonal terminal and presumably from dendritic compartment. Neuronal tPA regulates plastic changes in neuronal function and structure mediating key neurologic processes such as visual cortex plasticity, seizure spreading, cerebellar motor learning, long term potentiation and addictive or withdrawal behavior after morphine discontinuance. In addition to these physiological roles, tPA mediates excitotoxicity leading to the neurodegeneration in several pathological conditions including ischemic stroke. Increasing amount of evidence also suggest the role of tPA in neurodegenerative diseases such as Alzheimer's disease and multiple sclerosis even though beneficial effects was also reported in case of Alzheimer's disease based on the observation of tPA-induced degradation of $A{\beta}$ aggregates. Target proteins of tPA action include extracellular matrix protein laminin, proteoglycans and NMDA receptor. In addition, several receptors (or binding partners) for tPA has been reported such as low-density lipoprotein receptor-related protein (LRP) and annexin II, even though intracellular signaling mechanism underlying tPA action is not clear yet. Interestingly, the action of tPA comprises both proteolytic and non-proteolytic mechanism. In case of microglial activation, tPA showed non-proteolytic cytokine-like function. The search for exact target proteins and receptor molecules for tPA along with the identification of the mechanism regulating tPA expression and release in the nervous system will enable us to better understand several key neurological processes like teaming and memory as well as to obtain therapeutic tools against neurodegenerative diseases.

A Combined Pharmacophore-Based Virtual Screening, Docking Study and Molecular Dynamics (MD) Simulation Approach to Identify Inhibitors with Novel Scaffolds for Myeloid cell leukemia (Mcl-1)

  • Bao, Guang-Kai;Zhou, Lu;Wang, Tai-Jin;He, Lu-Fen;Liu, Tao
    • Bulletin of the Korean Chemical Society
    • /
    • v.35 no.7
    • /
    • pp.2097-2108
    • /
    • 2014
  • Chemical feature based quantitative pharmacophore models were generated using the HypoGen module implemented in DS2.5. The best hypothesis, Hypo1, which was characterized by the highest correlation coefficient (0.96), the highest cost difference (61.60) and the lowest RMSD (0.74), consisted of one hydrogen bond acceptor, one hydrogen bond donor, one hydrophobic and one ring aromatic. The reliability of Hypo1 was validated on the basis of cost analysis, test set, Fischer's randomization method and GH test method. The validated Hypo1 was used as a 3D search query to identify novel inhibitors. The screened molecules were further refined by employing ADMET, docking studies and visual inspection. Three compounds with novel scaffolds were selected as the most promising candidates for the designing of Mcl-1 antagonists. Finally, a 10 ns molecular dynamics simulation was carried out on the complex of receptor and the retrieved ligand to demonstrate that the binding mode was stable during the MD simulation.