DOI QR코드

DOI QR Code

RNA-Seq Transcriptome Analysis of the Cutlass Fish Reveals Photoreceptors Gene Expression in Peripheral Tissues

RNA-Seq transcriptome 분석을 통한 갈치 광수용체 유전자 탐색 및 mRNA 조직발현

  • Hyeon, Ji-Yeon (Jeju International Marine Science Research & Logistics Center, KIOST) ;
  • Kim, Mun-Kwan (Jeju Special Self-Governing Province Oceans and Fisheries Research Institute) ;
  • Lim, Bong-Soo (Solforto Co. Ltd.) ;
  • Byun, Jun-Hwan (Jeju International Marine Science Research & Logistics Center, KIOST) ;
  • Moon, Ji-Sung (Jeju International Marine Science Research & Logistics Center, KIOST) ;
  • Kang, Hyeong-Cheol (Jeju Special Self-Governing Province Oceans and Fisheries Research Institute) ;
  • Hur, Sung-Pyo (Jeju International Marine Science Research & Logistics Center, KIOST) ;
  • Oh, Seong-Rip (Jeju Special Self-Governing Province Oceans and Fisheries Research Institute)
  • 현지연 (한국해양과학기술원 제주국제해양과학연구지원센터) ;
  • 김문관 (제주특별자치도 해양수산연구원) ;
  • 임봉수 ((주)솔포투) ;
  • 변준환 (한국해양과학기술원 제주국제해양과학연구지원센터) ;
  • 문지성 (한국해양과학기술원 제주국제해양과학연구지원센터) ;
  • 강형철 (제주특별자치도 해양수산연구원) ;
  • 허성표 (한국해양과학기술원 제주국제해양과학연구지원센터) ;
  • 오성립 (제주특별자치도 해양수산연구원)
  • Received : 2017.04.17
  • Accepted : 2017.05.26
  • Published : 2017.06.30

Abstract

The opsin family of light sensitive proteins family makes up are the universal photoreceptor molecules of all visual systems in the vertebrates including teleosts. They can change their conformation from a resting state to a signaling state upon light absorption, which activates the G-protein coupled receptor, thereby resulting in a signaling cascade that produces physiological responses. However, this species is poorly characterized at molecular level due to little sequence information available in public databases. We have investigated the opsin family of nocturnal cutlass fish using the whole transcriptome sequencing method. The opsin genes were cloned and its expression in the tissues and organs were examined by qPCR. We cloned 6 opsin genes (RRH, Opn4, Rh1, Rh2, VA-opsin, and Opn3) in retina and brain tissue. It contained the seven presumed transmembrane domains that are characteristic of the G-protein-coupled receptor family. However, short wavelength sensitive pigment (SWS) and long wavelength sensitive pigment (LWS) were not detected in this study. The mRNA expression of the 6 photoreceptor genes were detected in retina and peripheral tissue. Our studies will lead to further investigation of the photic entrainment mechanism at molecular and cellular levels in cutlass fish and can be used in comparative studies of other fishes.

Keywords

References

  1. 김익수, 최윤, 이충렬, 이용주, 김병직, 김지현 (2005) 한국어류대도감. 교학사, 454 p (Kim IS, Choi Y, Lee CR, Lee YJ, Kim BJ, Kim JH (2005) Illustrated book of Korean fishes. Kyohaksa, 454 p)
  2. Altschul SF, Gish W, Miller W, Myers EW, Lipman DJ (1990) Basic local alignment search tool. J Mol Biol 215(3):403-410 https://doi.org/10.1016/S0022-2836(05)80360-2
  3. Beide F, Shunping H (2012) Transcriptome analysis of silver carp (Hypophthalmichthys molitrix) by paired-end RNA sequencing. DNA Res 19(2):131-142 https://doi.org/10.1093/dnares/dsr046
  4. Bellingham J, Chaurasia SS, Melyan Z, Liu C, Cameron MA, Tarttelin EE, Iuvone PM, Hankins MW, Tosini G, Lucas RJ (2006) Evolution of melanopsin photoreceptors:discovery and characterization of a new melanopsin in nonmammalian vertebrates. Plos Biol 4:e254 https://doi.org/10.1371/journal.pbio.0040254
  5. Benoit JM (1978) Chronobiologic study in the domestic duck. II. Physiological mechanism of the chronobiologic action of visible light on the gonads of the male duck. Chronobiologia 5:158-168
  6. Campbell SS, Murphy PJ, Suhner AG (2001) Extraocular phototransduction and circadian timing systems in vertebrates. Chronobiol Int 18:137-172 https://doi.org/10.1081/CBI-100103183
  7. Chen C, Khaleel SS, Huang H, Wu CH (2014) Software for pre-processing Illumina next-generation sequencing short read sequences. Source Code Biol Med 9:8 https://doi.org/10.1186/1751-0473-9-8
  8. Chinen A, Hamaoka T, Yamada Y, Kawamura S (2003) Gene duplication and spectral diversification of cone visual pigments of zebrafish. Genetics 163(2):663-675
  9. Collin SP, Davies WL, Hart NS, Hunt DM (2009) The evolution of early vertebrate photoreceptors. Philos T R Soc Lon B 364:2925-2940 https://doi.org/10.1098/rstb.2009.0099
  10. Coppe A, Pujolar JM, Maes GE, Larsen PF, Hansen MM, Bernatchez L, Zane L, Bortoluzzi S (2010) Sequencing, de novo annotation and analysis of the first Anguilla anguilla transcriptome: eeelbase opens new perspectives for the study of the critically endangered european eel. BMC Genomics 11:635 https://doi.org/10.1186/1471-2164-11-635
  11. Cortesi F, Musilova Z, Stieba SC, Hartd NS, Siebeck UE, Malmstrom M, Torresen OK, Jentoft S, Cheney KL, Marshall NJ, Carleton KL, Salzburger S (2015) Ancestral duplications and highly dynamic opsin gene evolution in percomorph fishes. P Natl A Sci USA 112(5):1493-1498 https://doi.org/10.1073/pnas.1417803112
  12. Davies WL, Hankins MW, Foster RG (2010) Vertebrate ancient opsin and melanopsin: divergent irradiance detectors. Photoch Photobio Sci 9(11):1444-1457 https://doi.org/10.1039/c0pp00203h
  13. Davies WL, Tamai TK, Zheng L, Fu JK, Rihel J, Foster RG, Whitmore D, Hankins MW (2015) An extended family of novel vertebrate photopigments is widely expressed and displays a diversity of function. Genome Res 25:1666-1679 https://doi.org/10.1101/gr.189886.115
  14. Falcon J, Besseau L, Sauzet S, Fuentes M, Boeuf G (2007) Melatonin and neuroendocrine regulations in fish. J Soc Bio 201:21-29 https://doi.org/10.1051/jbio:2007003
  15. Fox SE, Christie MR, Marine M, Priest HD, Mockler TC, Blouin MS (2014) Sequencing and characterization of the anadromous steelhead (Oncorhynchus mykiss) transcriptome. Mar Genom 15:13-15 https://doi.org/10.1016/j.margen.2013.12.001
  16. Garcia-Fernandez JM, Cernuda-Cernuda R, Davies WI, Rodgers J, Turton M, Peirson SN, Follett BK, Halford S, Hughes S, Hankins MW, Foster RG (2015) The hypothalamic photoreceptors regulating seasonal reproduction in birds: a prime role for VA opsin. Front Neuroendocrin 37:13-28 https://doi.org/10.1016/j.yfrne.2014.11.001
  17. Grabherr MG, Haas BJ, Yassour M, Levin JZ, Thompson DA, Amit I, Adiconis X, Fan L, Raychowdhury R, Zeng Q, Chen Z, Mauceli E, Hacohen N, Gnirke A, Rhind N, di Palma F, Birren BW, Nusbaum C, Lindblad-Toh K, Friedman N, Regev A (2011) Full-length transcriptome assembly from RNA-Seq data without a reference genome. Nat Biotechnol 29(7):644-652 https://doi.org/10.1038/nbt.1883
  18. Guido ME, Garbarino-Pico E, Contin MA, Valdez DJ, Nieto PS, Verra DM, Acosta-Rodriguez VA, Zavalia ND, Rosenstein RE (2010) Inner retinal circadian clocks and non-visual photoreceptors: novel players in the circadian system. Prog Neurobiol 92:484-504 https://doi.org/10.1016/j.pneurobio.2010.08.005
  19. Hunt DM, Dulai KS, Partridge JC, Cottrill P, Bowmaker JK (2001) The molecular basis for spectral tuning of rod visual pigments in deep-sea fish. J Exp Biol 204:3333-3344
  20. Karnik SS, Sakmar TP, Chen HB, Khorana HG (1988) Cysteine residues 110 and 187 are essential for the formation of correct structure in bovine rhodopsin. P Natl Acad Sci USA 85:8459-8463 https://doi.org/10.1073/pnas.85.22.8459
  21. Kim JW, Yang HJ, Oel AP, Brooks MJ, Jia L, Plachetzki DC, Li W, Allison WT, Swaroop A (2016) Recruitment of rod photoreceptors from short-wavelength-sensitive cones during the evolution of nocturnal vision in mammals. Dev Cell 37:520-532 https://doi.org/10.1016/j.devcel.2016.05.023
  22. Mader MM, Cameron DA (2004) Photoreceptor differentiation during retinal development, growth, and regeneration in a metamorphic vertebrate. J Neurosci 24(50):11463-11472 https://doi.org/10.1523/JNEUROSCI.3343-04.2004
  23. Matsumoto Y, Fukamachi S, Mitani H, Kawamura S (2006) Functional characterization of visual opsin repertoire in Medaka (Oryzias latipes). Gene 26:268-278
  24. Minamoto T, Shimizu I (2003) Molecular cloning and characterization of rhodopsin in a teleost (Plecoglossus altivelis, Osmeridae). Comp Biochem Phys B 134:559-570 https://doi.org/10.1016/S1096-4959(03)00030-7
  25. Oshima N (2001) Direct reception of light by chromatophores of lower vertebrates. Pigm Cell Res 14:312-319 https://doi.org/10.1034/j.1600-0749.2001.140502.x
  26. Philp AR, Garcia-Fernandez JM, Soni BG, Lucas RJ, Bellingham J, Foster RG (2000) Vertebrate ancient (VA) opsin and extraretinal photoreception in the Atlantic salmon (Salmo salar). J Exp Biol 203:1925-1936
  27. Qian X, Ba Y, Zhuang Q, Guofang Z (2014) RNA-seq technology and its application in fish transcriptomics. Omics 18(2):98-110 https://doi.org/10.1089/omi.2013.0110
  28. Sakmar TP, Franke RR, Khorana HG (1989) Glutamic acid-113 serves as the retinylidene Sciff base counterion in bovine rhodopsin. P Natl Acad Sci USA 86:8309-8313 https://doi.org/10.1073/pnas.86.21.8309
  29. Smith-Unna R, Boursnell C, Patro R, Hibberd JM, Kelly S (2015) Transrate: reference free quality assessment of denovo transcriptome assemblies. Genome Res 26(8):1134-1144 https://doi.org/10.1101/gr.196469.115
  30. Soni BG, Foster RG (1997) A novel and ancient vertebrate opsin. FEBS Lett 406:279-283 https://doi.org/10.1016/S0014-5793(97)00287-1
  31. Stanke M, Morgenstern B (2005) AUGUSTUS: a web server for gene prediction in eukaryotes that allows userdefined constraints. Nucleic Acids Res 33(Web Server issue):W465-W467 https://doi.org/10.1093/nar/gki458
  32. Stenkamp DL (2011) The rod photoreceptor kineage of teleost fish. Prog Retin Eye Res 30(6):395-404 https://doi.org/10.1016/j.preteyeres.2011.06.004
  33. Sugihara T, Nagata T, Mason B, Koyanagi M, Terakita A (2016) Absorption characteristics of vertebrate non-visual Opsin, Opn3. Plos One 11(8):e0161215 https://doi.org/10.1371/journal.pone.0161215
  34. Tada T, Altun A, Yokoyama S (2009) Evolutionary replacement of UV vision by violet vision in fish. P Natl Acad Sci USA 106(41):17457-17462 https://doi.org/10.1073/pnas.0903839106
  35. Takeuchi Y, Jafor Bapary MA, Igarashi S, Imamura S, Sawada Y, Matsumoto M, Hur SP, Takemura A (2011) Molecular cloning and expression of long-wavelengthsensitive cone opsin in the brain of a tropical damselfish. Comp Biochem Physiol 160:486-492 https://doi.org/10.1016/j.cbpa.2011.08.007
  36. Terakita A (2005) The opsins. Genome Biol 6:213 https://doi.org/10.1186/gb-2005-6-3-213
  37. Wang JK, McDowell JH, Hargrave PA (1980) Site of attachment of 11-cis-retinal in bovine rhodopsin. Biochemistry-US 19:5111-5117 https://doi.org/10.1021/bi00563a027
  38. Yokoyama S (2000) Molecular evolution of vertebrate visual pigments. Prog Retin Eye Res 19:385-419 https://doi.org/10.1016/S1350-9462(00)00002-1
  39. Zhang H, Futami K, Horie N, Okamura A, Utoh T, Mikawa N, Yamada Y, Tanaka S, Okamoto N (2000) Molecular cloning of fresh water and deep-sea rod opsin genes from Japanese eel Anguilla japonica and expressional analyses during sexual maturation. FEBS Lett 469(1):39-43 https://doi.org/10.1016/S0014-5793(00)01233-3
  40. Zhukovsky EA, Oprian DD (1989) Effect of carboxylic acid side chains on the absorption maximum of visual pigments. Science 246(4932):928-930 https://doi.org/10.1126/science.2573154