DOI QR코드

DOI QR Code

Beyond Clot Dissolution; Role of Tissue Plasminogen Activator in Central Nervous System

  • Kim, Ji-Woon (Department of Pharmacology, School of Medicine) ;
  • Lee, Soon-Young (Department of Pharmacology, College of Pharmacy, Seoul National University) ;
  • Joo, So-Hyun (Department of Pharmacology, School of Medicine,) ;
  • Song, Mi-Ryoung (Molecular Cellular and Developmental Biology, The Salk Institute) ;
  • Shin, Chan-Young (Department of Pharmacology, School of Medicine,Center for Geriatric Neuroscience Research, Institute of Biomedical Science and Technology, Konkuk University)
  • Published : 2007.03.30

Abstract

Tissue plasminogen activator (tPA) is a serine protease catalyzing the proteolytic conversion of plasminogen into plasmin, which is involved in thrombolysis. During last two decades, the role of tPA in brain physiology and pathology has been extensively investigated. tPA is expressed in brain regions such as cortex, hippocampus, amygdala and cerebellum, and major neural cell types such as neuron, astrocyte, microglia and endothelial cells express tPA in basal status. After strong neural stimulation such as seizure, tPA behaves as an immediate early gene increasing the expression level within an hour. Neural activity and/or postsynaptic stimulation increased the release of tPA from axonal terminal and presumably from dendritic compartment. Neuronal tPA regulates plastic changes in neuronal function and structure mediating key neurologic processes such as visual cortex plasticity, seizure spreading, cerebellar motor learning, long term potentiation and addictive or withdrawal behavior after morphine discontinuance. In addition to these physiological roles, tPA mediates excitotoxicity leading to the neurodegeneration in several pathological conditions including ischemic stroke. Increasing amount of evidence also suggest the role of tPA in neurodegenerative diseases such as Alzheimer's disease and multiple sclerosis even though beneficial effects was also reported in case of Alzheimer's disease based on the observation of tPA-induced degradation of $A{\beta}$ aggregates. Target proteins of tPA action include extracellular matrix protein laminin, proteoglycans and NMDA receptor. In addition, several receptors (or binding partners) for tPA has been reported such as low-density lipoprotein receptor-related protein (LRP) and annexin II, even though intracellular signaling mechanism underlying tPA action is not clear yet. Interestingly, the action of tPA comprises both proteolytic and non-proteolytic mechanism. In case of microglial activation, tPA showed non-proteolytic cytokine-like function. The search for exact target proteins and receptor molecules for tPA along with the identification of the mechanism regulating tPA expression and release in the nervous system will enable us to better understand several key neurological processes like teaming and memory as well as to obtain therapeutic tools against neurodegenerative diseases.

Keywords

References

  1. Balkowiec, A. and Katz, D. M. (2002). Cellular mechanisms regulating activity-dependent release of native brain-derived neurotrophic factor from hippocampal neurons. J Neurosci. 22,10399-10407
  2. Baranes, D., Lederfein, D., Huang, Y. Y., Chen, M., Bailey, C. H. and Kandel, E. R. (1998). Tissue plasminogen activator contributes to the late phase of LTP and to synaptic growth in the hippocampal mossy fiber pathway. Neuron. 21, 813-825 https://doi.org/10.1016/S0896-6273(00)80597-8
  3. Bennur, S., Shankaranarayana Rao, B. S., Pawlak, R., Strickland, S., McEwen, B. S. and Chattarji, S. (2007). Stress-induced spine loss in the medial amygdala is mediated by issue-plasminogen activator. Neuroscience. 144, 8-16 https://doi.org/10.1016/j.neuroscience.2006.08.075
  4. Calabresi, P., Napolitano, M., Centonze, D., Marfia, G. A., Gubellini, P., Teule, M. A., Berretta, N., Bernardi, G., Frati, L., Tolu, M. and Gulino, A. (2000). Tissue plasminogen activator controls multiple forms of synaptic plasticity and memory. Eur J Neurosci. 12, 1002-1012 https://doi.org/10.1046/j.1460-9568.2000.00991.x
  5. Canossa, M., Gartner, A., Campana, G., Inagaki, N. and Thoenen, H. (2001). Regulated secretion of neurotrophins by metabotropic glutamate group I (mGluRI) and Trk receptor activation is mediated via phospholipase C signalling pathways. EMBO J. 20, 1640-1650 https://doi.org/10.1093/emboj/20.7.1640
  6. Carroll, P. M., Tsirka, S. E., Richards, W. G., Frohman, M. A. and Strickland, S. (1994). The mouse tissue plasminogen activator gene 59 flanking region directs appropriate expression in development and a seizure-enhanced response in the CNS. Development. 120, 3173-3183
  7. Centonze, D., Napolitano, M., Saulle, E., Gubellini, P., Picconi, B., Martorana, A., Pisani, A., Gulino, A., Bernardi, G. and Calabresi, P. (2002). Tissue plasminogen activator is required for corticostriatal long-term potentiation. Eur J Neurosci. 16, 713-721 https://doi.org/10.1046/j.1460-9568.2002.02106.x
  8. Chen, Z. L. and Strickland, S. (1997). Neuronal death in the hippocampus is promoted by plasmin-catalyzed degradation of laminin. Cell. 91, 917-25 https://doi.org/10.1016/S0092-8674(00)80483-3
  9. Chen, Z. L. and Strickland, S. (1997). Neuronal death in the hippocampus is promoted by plasmin-catalyzed degradation of laminin. Cell. 91, 917-925 https://doi.org/10.1016/S0092-8674(00)80483-3
  10. de Kock, C. P., Wierda, K. D., Bosman, L. W., Min, R., Koksma, J. J., Mansvelder, H. D., Verhage, M. and Brussaard, A. B. (2003). Somatodendritic secretion in oxytocin neurons is upregulated during the female reproductive cycle. J Neurosci. 23, 2726-2734
  11. East, E., Baker, D., Pryce, G., Lijnen, H. R., Cuzner, M. L. and Gveric, D. (2005). A role for the plasminogen activator system in inflammation and neurodegeneration in the central nervous system during experimental allergic encephalomyelitis. Am J Pathol. 167, 545-554 https://doi.org/10.1016/S0002-9440(10)62996-3
  12. Fernandez-Monreal, M., Lopez-Atalaya, J. P., Benchenane, K., Cacquevel, M., Dulin, F., Le Caer, J. P., Rossier, J., Jarrige, A. C., Mackenzie, E. T., Colloc'h, N., Ali, C. and Vivien, D. (2004). Arginine 260 of the amino-terminal domain of NR1 subunit is critical for tissue-type plasminogen activator-mediated enhancement of N-methyl-D-aspartate receptor signaling. J Biol Chem. 279, 50850-50856 https://doi.org/10.1074/jbc.M407069200
  13. Fiumelli, H., Jabaudon, D., Magistretti, P. J. and Martin, J. L. (1999). BDNF stimulates expression, activity and release of tissue-type plasminogen activator in mouse cortical neurons. Eur J Neurosci. 11, 1639-1646 https://doi.org/10.1046/j.1460-9568.1999.00580.x
  14. Frey, U., Muller, M. and Kuhl, D. (1996). A different form of long-lasting potentiation revealed in tissue plasminogen activator mutant mice. J Neurosci. 16, 2057-2063
  15. Friedman, G. C. and Seeds, N. W. (1995). Tissue plasminogen activator mRNA expression in granule neurons coincides with their migration in the developing cerebellum. J Comp Neurol. 360, 658-670 https://doi.org/10.1002/cne.903600410
  16. Garcia-Rocha, M., Avila, J. and Armas-Portela, R. (1994). Tissuetype plasminogen activator (tPA) is the main plasminogen activator associated with isolated rat nerve growth cones. Neurosci Lett. 180, 123-126 https://doi.org/10.1016/0304-3940(94)90502-9
  17. Garcia-Rocha, M., Avila, J. and Armas-Portela, R. (1994). Tissuetype plasminogen activator (tPA) is the main plasminogen activator associated with isolated rat nerve growth cones. Neurosci Lett. 180, 123-126 https://doi.org/10.1016/0304-3940(94)90502-9
  18. Goodman, L. J., Valverde, J., Lim, F., Geschwind, M. D., Federoff, H. J., Geller, A. I. and Hefti, F. (1996). Regulated release and polarized localization of brain-derived neurotrophic factor in hippocampal neurons. Mol Cell Neurosci. 7, 222-238 https://doi.org/10.1006/mcne.1996.0017
  19. Griesbeck, O., Canossa, M., Campana, G., Gartner, A., Hoener, M. C., Nawa, H., Kolbeck, R. and Thoenen, H. (1999). Are there differences between the secretion characteristics of NGF and BDNF? Implications for the modulatory role of neurotrophins in activity-dependent neuronal plasticity. Microsc Res Tech 45, 262-275 https://doi.org/10.1002/(SICI)1097-0029(19990515/01)45:4/5<262::AID-JEMT10>3.0.CO;2-K
  20. Gualandris, A., Jones, T. E., Strickland, S. and Tsirka, S. E. (1996). Membrane depolarization induces calcium-dependent secretion of tissue plasminogen activator. J Neurosci. 16, 2220-2225
  21. Gveric, D., Herrera, B. M. and Cuzner, M. L. (2005). tPA receptors and the fibrinolytic response in multiple sclerosis lesions. Am J Pathol. 166, 1143-1151 https://doi.org/10.1016/S0002-9440(10)62334-6
  22. Horch, H. W. and Katz, L. C. (2002). BDNF release from single cells elicits local dendritic growth in nearby neurons. Nat Neurosci. 5, 1177-1184 https://doi.org/10.1038/nn927
  23. Hosomi, N., Lucero, J., Heo, J. H., Koziol, J. A., Copeland, B. R. and del Zoppo, G. J. (2001). Rapid differential endogenous plasminogen activator expression after acute middle cerebral artery occlusion. Stroke. 32, 1341-1348 https://doi.org/10.1161/01.STR.32.6.1341
  24. Huang, Y. Y., Bach, M. E., Lipp, H. P., Zhuo, M., Wolfer, D.P., Hawkins, R. D., Schoonjans, L., Kandel, E. R., Godfraind, J. M., Mulligan, R., Collen, D. and Carmeliet, P. (1996). Mice lacking the gene encoding tissue-type plasminogen activator show a selective interference with late-phase long-term potentiation in both Schaffer collateral and mossy fiber pathways. Proc Natl Acad Sci U S A. 93, 8699-8704 https://doi.org/10.1073/pnas.93.16.8699
  25. Huarte, J., Belin, D., Vassalli, A., Strickland, S., and Vassalli, J. D. (1987). Meiotic maturation of mouse oocytes triggers the translation and polyadenylation of dormant tissue-type plasminogen activator mRNA. Genes & Dev. 1, 1201-1211 https://doi.org/10.1101/gad.1.10.1201
  26. Indyk, J. A., Chen, Z. L., Tsirka, S. E. and Strickland, S. (2003). Laminin chain expression suggests that laminin-10 is a major isoform in the mouse hippocampus and is degraded by the tissue plasminogen activator/plasmin protease cascade during excitotoxic injury. Neuroscience. 116, 359-371 https://doi.org/10.1016/S0306-4522(02)00704-2
  27. Ito, M., Nagai, T., Mizoguchi, H., Fukakusa, A., Nakanishi, Y., Kamei, H., Nabeshima, T., Takuma, K. and Yamada, K. (2007). Possible involvement of protease-activated receptor-1 in the regulation of morphine-induced dopamine release and hyperlocomotion by the tissue plasminogen activator-plasmin system. J Neurochem. [Epub ahead of print] https://doi.org/10.1111/j.1471-4159.2006.04423.x
  28. Junge, C. E., Sugawara, T., Mannaioni, G., Alagarsamy, S., Conn, P. J., Brat, D. J., Chan, P. H. and Traynelis, S. F. (2003). The contribution of protease-activated receptor 1 to neuronal damage caused by transient focal cerebral ischemia. Proc Natl Acad Sci U S A. 100, 13019-13024 https://doi.org/10.1073/pnas.2235594100
  29. Kalderon, N., Ahonen, K. and Fedoroff, S. (1990). Developmental transition in plasticity properties of differentiating astrocytes: age-related biochemical profile of plasminogen activators in astroglial cultures. Glia. 3, 413-426 https://doi.org/10.1002/glia.440030513
  30. Kim, J. A., Tran, N. D., Wang, S. J. and Fisher, M. J. (2003). Astrocyte regulation of human brain capillary endothelial fibrinolysis. Thromb Res. 112, 159-165 https://doi.org/10.1016/j.thromres.2003.10.021
  31. Kim, Y. H., Park, J. H., Hong, S. H. and Koh, J. Y. (1999). Nonproteolytic neuroprotection by human recombinant tissue plasminogen activator. Science. 284, 647-650 https://doi.org/10.1126/science.284.5414.647
  32. Klein, G. M., Li, H., Sun, P. and Buchan, A. M. (1999). Tissue plasminogen activator does not increase neuronal damage in rat models of global and focal ischemia. Neurology. 52, 1381-1384 https://doi.org/10.1212/WNL.52.7.1381
  33. Kohara, K., Kitamura, A., Morishima, M. and Tsumoto, T. (2001). Activity-dependent transfer of brain-derived neurotrophic factor to postsynaptic neurons. Science. 291, 2419-2423 https://doi.org/10.1126/science.1057415
  34. Kranenburg, O., Gent, Y. Y., Romijn, E. P., Voest, E. E., Heck, A. J. and Gebbink, M. F. (2005). Amyloid-beta-stimulated plasminogen activation by tissue-type plasminogen activator results in processing of neuroendocrine factors. Neuroscience. 131, 877-886 https://doi.org/10.1016/j.neuroscience.2004.11.044
  35. Krystosek, A. and Seeds, N. W. (1981). Plasminogen activator release at the neuronal growth cone. Science. 213, 1532-1534 https://doi.org/10.1126/science.7197054
  36. Krystosek, A. and Seeds, N. W. (1986). Normal and malignant cells, including neurons, deposit plasminogen activator on the growth substrata. Exp Cell Res. 166, 31-46 https://doi.org/10.1016/0014-4827(86)90506-9
  37. Leprince, P., Bonvoisin, C., Rogister, B., Mazy-Servais, C. and Moonen, G. (1996). Protein kinase- and staurosporine-dependent induction of neurite outgrowth and plasminogen activator activity in PC12 cells. Biochem Pharmacol. 52, 1399-1405 https://doi.org/10.1016/S0006-2952(96)00472-8
  38. Leprince, P., Rogister, B., Delree, P., Rigo, J. M., Andre, B. and Moonen, G. (1991). Modulation of proteolytic activity during neuritogenesis in the PC12 nerve cell: differential control of plasminogen activator and plasminogen activator inhibitor activities by nerve growth factor and dibutyryl-cyclic AMP. J Neurochem. 57, 665-674 https://doi.org/10.1111/j.1471-4159.1991.tb03798.x
  39. Li, J., Imitola, J., Snyder, E. Y. and Sidman, R. L. (2006). Neural stem cells rescue nervous purkinje neurons by restoring molecular homeostasis of tissue plasminogen activator and downstream targets. J Neurosci. 26, 7839-7848 https://doi.org/10.1523/JNEUROSCI.1624-06.2006
  40. Liang, X., Kanjanabuch, T., Mao, S. L., Hao, C. M., Tang, Y. W., Declerck, P. J., Hasty, A. H., Wasserman, D. H., Fogo, A. B. and Ma, L. J. (2006). Plasminogen activator inhibitor-1 modulates adipocyte differentiation. Am J Physiol Endocrinol Metab. 290, E103-E113 https://doi.org/10.1152/ajpendo.00605.2004
  41. Lochner, J. E., Honigman, L. S., Grant, W. F., Gessford, S. K., Hansen, A. B., Silverman, M. A. and Scalettar, B. A. (2006). Activity-dependent release of tissue plasminogen activator from the dendritic spines of hippocampal neurons revealed by live-cell imaging. J Neurobiol. 66, 564-577 https://doi.org/10.1002/neu.20250
  42. Lochner, J. E., Kingma, M., Kuhn, S., Meliza, C. D., Cutler, B. and Scalettar, B. A. (1998). Real-time imaging of the axonal transport of granules containing a tissue plasminogen activator/green fluorescent protein hybrid. Mol Biol Cell. 9, 2463-2476 https://doi.org/10.1091/mbc.9.9.2463
  43. Lu, W., Bhasin, M. and Tsirka, S. E. (2002). Involvement of tissue plasminogen activator in onset and effector phases of experimental allergic encephalomyelitis. J Neurosci. 22, 10781-10789
  44. Ludwig, M., Sabatier, N., Bull, P. M., Landgraf, R., Dayanithi, G. and Leng, G. (2002). Intracellular calcium stores regulate activity-dependent neuropeptide release from dendrites. Nature. 418, 85-89 https://doi.org/10.1038/nature00822
  45. Madani, R., Hulo, S., Toni, N., Madani, H., Steimer, T., Muller, D. and Vassalli, J. D. (1999). Enhanced hippocampal long-term potentiation and learning by increased neuronal expression of tissue-type plasminogen activator in transgenic mice. EMBO J. 18, 3007-3012 https://doi.org/10.1093/emboj/18.11.3007
  46. Mataga, N., Imamura, K., Shiomitsu, T., Yoshimura, Y., Fukamauchi, K. and Watanabe, Y. (1996). Enhancement of mRNA expression of tissue-type plasminogen activator by L-threo-3,4-dihydroxyphenylserine in association with ocular dominance plasticity. Neurosci Lett. 218, 149-152 https://doi.org/10.1016/S0304-3940(96)13139-6
  47. Mataga, N., Mizuguchi, Y. and Hensch, T. K. (2004). Experiencedependent pruning of dendritic spines in visual cortex by tissue plasminogen activator. Neuron. 44, 1031-1041 https://doi.org/10.1016/j.neuron.2004.11.028
  48. Mataga, N., Nagai, N. and Hensch, T. K. (2002). Permissive proteolytic activity for visual cortical plasticity. Proc Natl Acad Sci U S A. 99, 7717-7721 https://doi.org/10.1073/pnas.102088899
  49. Matys, T., Pawlak, R., Matys, E., Pavlides, C., McEwen, B. S., Strickland, S. (2004). Tissue plasminogen activator promotes the effects of corticotropin-releasing factor on the amygdala and anxiety-like behavior. Proc Natl Acad Sci U S A. 101, 16345-16350 https://doi.org/10.1073/pnas.0407355101
  50. Medina, M. G., Ledesma, M. D., Dominguez, J. E., Medina, M., Zafra, D., Alameda, F., Dotti, C.G. and Navarro, P. (2005). Tissue plasminogen activator mediates amyloid-induced neurotoxicity via Erk1/2 activation. EMBO J. 24, 1706-1716 https://doi.org/10.1038/sj.emboj.7600650
  51. Melchor, J. P., Pawlak, R. and Strickland, S. (2003). The tissue plasminogen activator-plasminogen proteolytic cascade accelerates amyloid-beta (Abeta) degradation and inhibits Abetainduced neurodegeneration. J Neurosci. 23, 8867-8871
  52. Mohr, E. and Richter, D. (2004). Subcellular vasopressin mRNA trafficking and local translation in dendrites. J Neuroendocrinol. 16, 333-339 https://doi.org/10.1111/j.0953-8194.2004.01176.x
  53. Mohr, E., Kachele, I., Mullin, C. and Richter, D. (2002). Rat vasopressin mRNA: a model system to characterize cis-acting elements and trans-acting factors involved in dendritic mRNA sorting. Prog Brain Res. 139, 211-224 https://doi.org/10.1016/S0079-6123(02)39018-6
  54. Morsette, D. J., Sidorowicz, H. and Sladek, C. D. (2001). Role of metabotropic glutamate receptors in vasopressin and oxytocin release. Am J Physiol Regul Integr Comp Physiol. 281, R452-458 https://doi.org/10.1152/ajpregu.2001.281.2.R452
  55. Muller, C. M. and Griesinger, C. B. (1998). Tissue plasminogen activator mediates reverse occlusion plasticity in visual cortex. Nat Neurosci. 1, 47-53 https://doi.org/10.1038/248
  56. Nagai, N., Urano, T., Endo, A., Takahashi, H., Takada, Y. and Takada, A. (1999). Neuronal degeneration and a decrease in laminin-like immunoreactivity is associated with elevated tissue-type plasminogen activator in the rat hippocampus after kainic acid injection. Neurosci Res. 33, 147-154 https://doi.org/10.1016/S0168-0102(98)00125-4
  57. Nagai, N., Yamamoto, S., Tsuboi, T., Ihara, H., Urano, T., Takada, Y., Terakawa, S. and Takada, A. (2001). Tissue-type plasminogen activator is involved in the process of neuronal death induced by oxygen-glucose deprivation in culture. J Cereb Blood Flow Metab. 21, 631-634 https://doi.org/10.1097/00004647-200106000-00001
  58. Nagai, T., Yamada, K., Yoshimura, M., Ishikawa, K., Miyamoto, Y., Hashimoto, K., Noda Y., Nitta, A. and Nabeshima, T. (2004). The tissue plasminogen activator-plasmin system participates in the rewarding effect of morphine by regulating dopamine release. Proc Natl Acad Sci U S A. 101, 3650-3655 https://doi.org/10.1073/pnas.0306587101
  59. Nakagami, Y., Abe, K., Nishiyama, N. and Matsuki, N. (2000). Laminin degradation by plasmin regulates long-term potentiation. J Neurosci. 20, 2003-2010
  60. Napolitano, M., Marfia, G. A., Vacca, A., Centonze, D., Bellavia, D., Di Marcotullio, L., Frati, L., Bernardi, G., Gulino, A. and Calabresi, P. (1999). Modulation of gene expression following long-term synaptic depression in the striatum. Brain Res Mol Brain Res. 72, 89-96 https://doi.org/10.1016/S0169-328X(99)00213-2
  61. Neuhoff, H., Roeper, J. and Schweizer, M. (1999). Activitydependent formation of perforated synapses in cultured hippocampal neurons. Eur J Neurosci. 11, 4241-4250 https://doi.org/10.1046/j.1460-9568.1999.00856.x
  62. Nicole, O., Docagne, F., Ali, C., Margaill, I., Carmeliet, P., MacKenzie, E. T., Vivien, D. and Buisson, A. (2001). The proteolytic activity of tissue-plasminogen activator enhances NMDA receptor-mediated signaling. Nat Med. 7, 59-64 https://doi.org/10.1038/83358
  63. Nicole, O., Docagne, F., Ali, C., Margaill, I., Carmeliet, P., MacKenzie, E. T., Vivien, D. and Buisson, A. (2001). The proteolytic activity of tissue-plasminogen activator enhances NMDA receptor-mediated signaling. Nat Med. 7, 59-64 https://doi.org/10.1038/83358
  64. Pang, P. T., Teng, H. K., Zaitsev, E., Woo, N. T., Sakata, K., Zhen, S., Teng, K. K., Yung, W. H., Hempstead, B. L. and Lu, B. (2004). Cleavage of proBDNF by tPA/plasmin is essential for long-term hippocampal plasticity. Science. 306, 487-491 https://doi.org/10.1126/science.1100135
  65. Parmer, R. J., Mahata, M., Mahata, S., Sebald, M. T., O'Connor, D. T. and Miles, L. A. (1997). Tissue plasminogen activator (t-PA) is targeted to the regulated secretory pathway. Catecholamine storage vesicles as a reservoir for the rapid release of t-PA. J Biol Chem. 272, 1976-1982 https://doi.org/10.1074/jbc.272.3.1976
  66. Pawlak, R., Magarinos, A. M., Melchor, J., McEwen, B. and Strickland, S. (2003). Tissue plasminogen activator in the amygdala is critical for stress-induced anxiety-like behavior. Nat Neurosci. 6, 168-174 https://doi.org/10.1038/nn998
  67. Pawlak, R., Melchor, J. P., Matys, T., Skrzypiec, A. E. and Strickland, S. (2005). Ethanol-withdrawal seizures are controlled by tissue plasminogen activator via modulation of NR2B-containing NMDA receptors. Proc Natl Acad Sci U S A. 102, 443-448 https://doi.org/10.1073/pnas.0406454102
  68. Pawlak, R., Nagai, N., Urano, T., Napiorkowska-Pawlak, D., Ihara, H., Takada, Y., Collen, D. and Takada, A. (2002). Rapid, specific and active site-catalyzed effect of tissue-plasminogen activator on hippocampus-dependent learning in mice. Neuroscience. 113, 995-1001 https://doi.org/10.1016/S0306-4522(02)00166-5
  69. Pittman, R. N. and DiBenedetto, A. J. (1995). PC12 cells overexpressing tissue plasminogen activator regenerate neurites to a greater extent and migrate faster than control cells in complex extracellular matrix. J Neurochem. 64, 566-575 https://doi.org/10.1046/j.1471-4159.1995.64020566.x
  70. Pittman, R. N., Ivins, J. K., Buettner, H. M. (1989). Neuronal plasminogen activators: cell surface binding sites and involvement in neurite outgrowth. J Neurosci. 9, 4269-4286
  71. Polavarapu, R., Gongora, M. C., Yi, H., Ranganthan, S., Lawrence, D. A., Strickland, D. and Yepes, M. (2006). Tissue-type plasminogen activator-mediated shedding of astrocytic low density lipoprotein receptor-related protein increases the permeability of the neurovascular unit. Blood. [Epub ahead of print]
  72. Qian, Z., Gilbert, M. E., Colicos, M. A., Kandel, E. R. and Kuhl, D. (1993). Tissue-plasminogen activator is induced as an immediate-early gene during seizure, kindling and long-term potentiation. Nature. 361, 453-457 https://doi.org/10.1038/361453a0
  73. Qian, Z., Gilbert, M. E., Colicos, M. A., Kandel, E. R. and Kuhl, D. (1993). Tissueplasminogen activator is induced as an immediate-early gene during seizure, kindling and long-term potentiation. Nature. 361, 453-457 https://doi.org/10.1038/361453a0
  74. Rogove, A. D. and Tsirka, S. E. (1998). Neurotoxic responses by microglia elicited by excitotoxic injury in the mouse hippocampus. Curr Biol. 8, 19-25 https://doi.org/10.1016/S0960-9822(98)70016-8
  75. Rogove, A. D., Siao, C., Keyt, B., Strickland, S. and Tsirka, S.E. (1999). Activation of microglia reveals a non-proteolytic cytokine function for tissue plasminogen activator in the central nervous system. J Cell Sci. 112, 4007-4016
  76. Santell, L., Marotti, K. R. and Levin, E. G. (1999). Targeting of tissue plasminogen activator into the regulated secretory pathway of neuroendocrine cells. Brain Res. 816, 258-265 https://doi.org/10.1016/S0006-8993(98)01054-3
  77. Seeds, N. W., Basham, M. E. and Ferguson, J. E. (2003). Absence of tissue plasminogen activator gene or activity impairs mouse cerebellar motor learning. J Neurosci. 23, 7368-7375
  78. Seeds, N. W., Basham, M. E. and Haffke, S. P. (1999). Neuronal migration is retarded in mice lacking the tissue plasminogen activator gene. Proc Natl Acad Sci U S A. 96, 14118-14123 https://doi.org/10.1073/pnas.96.24.14118
  79. Seeds, N. W., Williams, B. L. and Bickford, P. C. (1995). Tissue plasminogen activator induction in Purkinje neurons after cerebellar motor learning. Science. 270, 1992-1994 https://doi.org/10.1126/science.270.5244.1992
  80. Seeds, N. W., Williams, B. L. and Bickford, P. C. (1995). Tissue plasminogen activator induction in Purkinje neurons after cerebellar motor learning. Science. 270, 1992-1994 https://doi.org/10.1126/science.270.5244.1992
  81. Seeds, N. W., Williams, B. L., Bickford, P. C. (1995). Tissue plasminogen activator induction in Purkinje neurons after cerebellar motor learning. Science. 270, 1992-1994 https://doi.org/10.1126/science.270.5244.1992
  82. Shin, C.Y., Kundel, M. and Wells, D. G. (2004). Rapid, activityinduced increase in tissue plasminogen activator is mediated by metabotropic glutamate receptor-dependent mRNA translation. J Neurosci. 24, 9425-9433 https://doi.org/10.1523/JNEUROSCI.2457-04.2004
  83. Siao, C. J. and Tsirka, S. E. (2002). Tissue plasminogen activator mediates microglial activation via its finger domain through annexin II. J Neurosci. 22, 3352-3358
  84. Siao, C. J., Fernandez, S. R. and Tsirka, S. E. (2003). Cell typespecific roles for tissue plasminogen activator released by neurons or microglia after excitotoxic injury. J Neurosci. 23, 3234-3242
  85. Siconolfi, L. B. and Seeds, N. W. (2001). Induction of the plasminogen activator system accompanies peripheral nerve degeneration after sciatic nerve crush. J. Neurosci. 21, 4336-4347
  86. Siconolfi, L. B. and Seeds, N. W. (2001). Mice lacking tPA, uPA, or plasminogen genes showed delayed functional recovery after sciatic nerve crush. J Neurosci. 21, 4348-4355
  87. Silverman, M. A., Johnson, S., Gurkins, D., Farmer, M., Lochner, J. E., Rosa, P. and Scalettar, B. A. (2005). Mechanisms of transport and exocytosis of dense-core granules containing tissue plasminogen activator in developing hippocampal neurons. J Neurosci. 25, 3095-3106 https://doi.org/10.1523/JNEUROSCI.4694-04.2005
  88. Takahashi, H., Nagai N. and Urano, T. (2005). Role of tissue plasminogen activator/plasmin cascade in delayed neuronal death after transient forebrain ischemia. Neurosci Lett. 381, 189-193 https://doi.org/10.1016/j.neulet.2005.02.031
  89. Tsai, S. J. (2006). Statins may enhance the proteolytic cleavage of proBDNF: Implications for the treatment of depression. Med Hypotheses. [Epub ahead of print] https://doi.org/10.1016/j.mehy.2006.09.043
  90. Tsirka, S. E., Gualandris, A., Amaral, D. G. and Strickland, S. (1995). Excitotoxin-induced neuronal degeneration and seizure are mediated by tissue plasminogen activator. Nature. 377, 340-344 https://doi.org/10.1038/377340a0
  91. Tsirka, S. E., Rogove, A. D. and Strickland, S. (1996). Neuronal cell death and tPA. Nature. 384, 123-124 https://doi.org/10.1038/384123b0
  92. Tsirka, S. E., Rogove, A. D., Bugge, T. H., Degen, J. L. and Strickland, S. (1997). An extracellular proteolytic cascade promotes neuronal degeneration in the mouse hippocampus. J Neurosci. 17, 543-552
  93. Tsirka, S. E., Rogove, A. D., Bugge, T. H., Degen, J. L. and Strickland, S. (1997). An extracellular proteolytic cascade promotes neuronal degeneration in the mouse hippocampus. J Neurosci. 17, 543-552
  94. Tucker, H. M., Kihiko-Ehmann, M., Wright, S., Rydel, R. E. and Estus, S. (2000). Tissue plasminogen activator requires plasminogen to modulate amyloid-beta neurotoxicity and deposition. J Neurochem. 75, 2172-2177 https://doi.org/10.1046/j.1471-4159.2000.0752172.x
  95. Tucker, H. M., Kihiko, M., Caldwell, J. N., Wright, S., Kawarabayashi, T., Price, D., Walker, D., Scheff, S., McGillis, J. P., Rydel, R. E. and Estus, S. (2000). The plasmin system is induced by and degrades amyloid-beta aggregates. J Neurosci. 20, 3937-3946
  96. Ware, J. H., DiBenedetto, A. J. and Pittman, R. N. (1995). Localization of tissue plasminogen activator mRNA in the developing rat cerebellum and effects of inhibiting tissue plasminogen activator on granule cell migration. J Neurobiol. 28, 9-22 https://doi.org/10.1002/neu.480280103
  97. Wu, Y. J., Kruttgen, A., Moller, J. C., Shine, D., Chan, J. R., Shooter, E. M. and Cosgaya, J. M. (2004). Nerve growth factor, brain-derived neurotrophic factor, and neurotrophin-3 are sorted to dense-core vesicles and released via the regulated pathway in primary rat cortical neurons. J Neurosci Res. 75, 825-834 https://doi.org/10.1002/jnr.20048
  98. Wu, Y. P., Siao, C. J., Lu, W., Sung, T. C., Frohman, M. A., Milev, P., Bugge, T. H., Degen, J. L., Levine, J. M., Margolis, R. U., Tsirka, S. E. (2000). The tissue plasminogen activator (tPA)/plasmin extracellular proteolytic system regulates seizure-induced hippocampal mossy fiber outgrowth through a proteoglycan substrate. J Cell Biol. 148, 1295-1304 https://doi.org/10.1083/jcb.148.6.1295
  99. Yan, Y., Yamada, K., Mizoguchi, H., Noda, Y., Nagai, T., Nitta, A. and Nabeshima, T. (2007). Reinforcing effects of morphine are reduced in tissue plasminogen activator-knockout mice. Neuroscience. [Epub ahead of print] https://doi.org/10.1016/j.neuroscience.2007.01.011
  100. Yu, H., Schleuning, W. D., Michl, M., Liberatore, G., Tan, S. S. and Medcalf, R. L. (2001). Control elements between -9.5 and -3.0 kb in the human tissue-type plasminogen activator gene promoter direct spatial and inducible expression to the murine brain. Eur J Neurosci. 14, 799-808 https://doi.org/10.1046/j.0953-816x.2001.01700.x
  101. Zhang, Y., Kanaho, Y., Frohman, M. A. and Tsirka, S. E. (2005). Phospholipase D1-promoted release of tissue plasminogen activator facilitates neurite outgrowth. J Neurosci. 25, 1797-1805 https://doi.org/10.1523/JNEUROSCI.4850-04.2005
  102. Zhao, B. Q., Ikeda, Y., Ihara, H., Urano, T., Fan, W., Mikawa, S., Suzuki, Y., Kondo, K., Sato, K., Nagai, N. and Umemura, K. (2003). Essential role of endogenous tissue plasminogen activator through matrix metalloproteinase 9 induction and expression on heparin-produced cerebral hemorrhage after cerebral ischemia in mice. Blood. 103, 2610-2616 https://doi.org/10.1182/blood-2003-03-0835
  103. Zhuo, M., Holtzman, D. M., Li, Y., Osaka, H., DeMaro, J., Jacquin, M. and Bu, G. (2000). Role of tissue plasminogen activator receptor LRP in hippocampal long-term potentiation. J Neurosci. 20, 542-549