• Title/Summary/Keyword: Visible photocatalyst

Search Result 163, Processing Time 0.023 seconds

Evaluation on the Photodegradation Rate of NOx Using High Efficiency Visible-Light Responsive Photocatalysts (고효율 가시광 반응형 광촉매를 이용한 NOx의 광저감율 평가)

  • Cha, Ji An;An, Sang Hun;Cho, Eun hee;Kim, Tae Oh
    • Particle and aerosol research
    • /
    • v.6 no.4
    • /
    • pp.165-172
    • /
    • 2010
  • Titania is widely used as an effective photocatalyst for the photodegradation of environmental pollutants in air. In this study, novel N-doped $ZrO_2/TiO_2$ photocatalysts were synthesized via sol-gel method and characterized by UV-Vis spectrophotometer, transmission electron microscope, and X-ray diffractometer. N-doped $ZrO_2/TiO_2$ photocatalysts were nano-sized with an average particle size of about 20 nm. The XRD pattern of N-doped $ZrO_2/TiO_2$ photocatalysts showed both anatase and rutile phases. The photocatalytic activity of N-doped $ZrO_2/TiO_2$ photocatalysts was evaluated by degradation of NO under UV and visible light irradiation at various parameters such as amount of photocatalyst, concentration of NO, and intensity of light. The photocatalytic activity of N-doped $ZrO_2/TiO_2$ photocatalysts was effective for the enhancement of the degradation of NO and higher than that of $TiO_2$ photocatlysts under UV and visible light irradiation.

Hydrothermal Synthesis, Characterization and Improved Activity of a Visible-Light-Driven ZnSe-Sensitized TiO2 Composite Photocatalyst

  • Zhu, Lei;Peng, Mei-Mei;Cho, Kwang Youn;Ye, Shu;Sarkar, Sourav;Ullah, Kefayat;Meng, Ze-Da;Oh, Won-Chun
    • Journal of the Korean Ceramic Society
    • /
    • v.50 no.6
    • /
    • pp.504-509
    • /
    • 2013
  • In this study, ZnSe-$TiO_2$ composites were synthesized by a facile hydrothermal-assisted sol-gel process and characterized by nitrogen adsorption isotherms (77 K), X-ray diffraction (XRD), scanning electron microscopy (SEM) with energy dispersive X-ray (EDX) analysis, transmission electron microscopy (TEM) and UV-vis diffuse reflectance spectrophotometry. The photocatalytic activity was investigated by decoloration methylene blue (MB), methyl orange (MO), and rhodamine B (Rh.B) in an aqueous solution under visible light irradiation. The results revealed that the photocatalytic activity of the ZnSe-$TiO_2$ photocatalyst was much higher than that of pure$TiO_2$. The ZnSe nanoparticles, which act as a photosensitizer, not only extend the spectral response of $TiO_2$ to the visible region but also reduce charge recombinations.

Synthesis of Bismuth Vanadate as Visible-light Photocatalyst by Precipitation Reaction (침전 반응에 의한 가시광 광촉매 Bismuth Vanadate 합성)

  • Kim, Sang-Mun;Lee, Jae-Yong;Mun, Choo-Yeun;Lee, Hean-Soo
    • Journal of the Korean Ceramic Society
    • /
    • v.48 no.6
    • /
    • pp.630-635
    • /
    • 2011
  • Bismuth vanadate($BiVO_4$) with monoclinic phase as photocatalyst under visible light is synthesized by precipitation reaction in hot water. Properties such as crystal phase, particle morphology and visual light absorbance as well as the effects of thermal treatment for $BiVO_4$ powders are investigated. $BiVO_4$ powders with both single monoclinic phase and 0.2 ${\mu}m$ in particle size are synthesized when precipitate is stirred in water for 5 h at 95$^{\circ}C$. Well-developed monoclinic phase and light absorption property under 535 nm are observed as a result of thermal treatment for 1 h at 300$^{\circ}C$ after precipitation reaction in water for 5 h at 95$^{\circ}C$. Degradation of monoclinic crystal is found in firing above 350$^{\circ}C$, and particle growth is occurred in firing above 550$^{\circ}C$.

Facile Synthesis of Flower-like Superparamagnetic Fe3O4/BiOCl Nanocomposites as High Effective Magnetic Recyclable Photocatalyst under Visible Light

  • Wang, Wei;He, Mingyi;Zhang, Huan;Dai, Yatang
    • Journal of Magnetics
    • /
    • v.21 no.2
    • /
    • pp.179-182
    • /
    • 2016
  • In this paper, 10 nm $Fe_3O_4$ nanoparticles were modified on the surface of $2{\mu}m$ flower-like bismuth oxychloride (BiOCl) spheres by a facile co-precipitation method. The results showed that the $Fe_3O_4/BiOCl$ nanocomposites exhibited excellent photocatalytic activity and superparamagnetic property ($M_s=3.22emu/g$) under visible light for Rhodamine B (RhB) degradation. Moreover, the $Fe_3O_4-BiOCl$ photocatalyst possessed magnetic recyclable property, which could maintain high photocatalytic effective even after 20 cycle times. These characteristic indicates a promising application for wastewater treatment.

Photocatalytic Degradation and Adsorptive Removal of Tetracycline on Amine-Functionalized Graphene Oxide/ZnO Nanocomposites

  • Thanh Truong Dang;Hoai-Thanh Vuong;Sung Gu Kang;Jin Suk Chung
    • Korean Chemical Engineering Research
    • /
    • v.61 no.4
    • /
    • pp.635-644
    • /
    • 2023
  • Due to the rapid development of the livestock industry, particularly due to residual pharmaceutical antibiotics, environmental populations have been negatively affected. Herein, we report a ZnO/melamine-functionalized carboxylic-rich graphene oxide (ZFG) photocatalyst for visible light-driven photocatalytic degradation of tetracycline hydrochloride in aqueous solutions. The properties of the photocatalysts were evaluated by XRD, FTIR, XPS, Fe-SEM, HR-TEM, TGA, Raman spectroscopy, UV-Vis spectroscopy, zeta potential, and electrochemical measurements. The photocatalytic activity was measured using high-performance liquid chromatography. The photocatalytic properties of the ZFG photocatalyst evaluated against the tetracycline hydrochloride (TCH) antibiotic under visible light irradiation showed superior photodegradation of 96.27% within 60 min at an initial pH of 11. The enhancement of photocatalytic degradation was due to the introduction of functionalized graphene, which increases the light-harvesting capability and molecular adsorption capability in addition to minimizing the recombination rate of photogenerated charge carriers due to its role as an electron acceptor and mediator.

Preparation of WO3-TiO2 Photocatalyst and Evaluation of Its Photo-activity in the Visible Light Range (가시광 활성 WO3-TiO2 복합체 광촉매의 제조 및 이의 특성 평가)

  • Yeo, In-Chul;Kang, In-Cheol
    • Journal of Powder Materials
    • /
    • v.20 no.6
    • /
    • pp.474-478
    • /
    • 2013
  • The most general photocatalyst, $TiO_2$ and $WO_3$, are acknowledged to be ineffective in range of visible light. Therefore, many efforts have been directed at improving their activity such as: band-gap narrowing with non-metal element doping and making composites with high specific surface area to effectively separate electrons and holes. In this paper, the method was introduced to prepare a photo-active catalyst to visible irradiation by making a mixture with $TiO_2$ and $WO_3$. In the $TiO_2-WO_3$ composite, $WO_3$ absorbs visible light creating excited electrons and holes while some of the excited electrons move to $TiO_2$ and the holes remain in $WO_3$. This charge separation reduces electron-hole recombination resulting in an enhancement of photocatalytic activity. Added Ag plays the role of electron acceptor, retarding the recombination rate of excited electrons and holes. In making a mixture of $TiO_2-WO_3$ composite, the mixing route affects the photocatalytic activity. The planetary ball-mill method is more effective than magnetic stirring route, owing to a more effective dispersion of aggregated powders. The volume ratio of $TiO_2(4)$ and $WO_3(6)$ shows the most effective photocatalytic activity in the range of visible light in the view point of effective separation of electrons and holes.

Visible-light Photocatalytic Activity of BiOCl/Bi3O4Cl Nanocomposites

  • Gao, Bifen;Chakraborty, Ashok Kumar;Yang, Ji-Min;Lee, Wan-In
    • Bulletin of the Korean Chemical Society
    • /
    • v.31 no.7
    • /
    • pp.1941-1944
    • /
    • 2010
  • The heterojunction structures of BiOCl/$Bi_3O_4Cl$, exhibiting considerable visible-light photocatalytic efficiency, were prepared by a simple wet-chemical process at ambient condition. The prepared nanocomposites were characterized by XRD, TEM, and UV-visible diffuse reflectance spectra. Under visible light (${\lambda}\geq$420 nm) irradiation, BiOCl/$Bi_3O_4Cl$ exhibited an enhanced photocatalytic activity in decomposing 2-propanol (IP) in gas phase and salicylic acid (SA) in aqueous solution, whereas the bare BiOCl and $Bi_3O_4Cl$ showed negligible activities. It is deduced that the remarkable visible-light photocatalytic activity of the BiOCl/$Bi_3O_4Cl$ originates from the hole $(h^+)$ transfer between VB of the $Bi_3O_4Cl$ and BiOCl semiconductors.

Preparation and Characteristics of Visible-Light-Active $TiO_2-_xN_x$ Nanoparticles for Photocatalytic Activities (가시광 활성을 갖는 광촉매용 $TiO_2-_xN_x$ 나노입자의 제조 및 특성)

  • Yun, Tae-Kwan;Bae, Jae-Young
    • Journal of Korean Society of Environmental Engineers
    • /
    • v.31 no.11
    • /
    • pp.1019-1024
    • /
    • 2009
  • Visible-light-active $TiO_2-_xN_x$ nanoparticles with a homogeneous anatase crystalline structure were successfully prepared through a hydrolysis of $TiCl_4$ with ammonia solution. The samples were characterized by X-ray diffraction (XRD), Transmission electron microscopy (TEM), $N_2$-sorption, and UV-vis diffuse reflectance spectra (DRS) techniques. The light absorption onset shifted from 390 nm on pure $TiO_2$ to the visible region at 530 nm on nitrogen-doped $TiO_2$. A clear decrease in the band gap was deduced from the DRS results. The photocatalytic activity was evaluated from the photodegradation of congo red solution under visible light irradiation. The photocatalyst showed the highest photocatalytic activity at an optimal value of nitrogen doping concentration. This was suggested that the nitrogen doping should have an important effects on the improvement of photocatalytic activity.