Browse > Article
http://dx.doi.org/10.4150/KPMI.2013.20.6.474

Preparation of WO3-TiO2 Photocatalyst and Evaluation of Its Photo-activity in the Visible Light Range  

Yeo, In-Chul (Department of Mechanical Engineering, Incheon University)
Kang, In-Cheol (Technology Convergence Center, IncheonTechnopark)
Publication Information
Journal of Powder Materials / v.20, no.6, 2013 , pp. 474-478 More about this Journal
Abstract
The most general photocatalyst, $TiO_2$ and $WO_3$, are acknowledged to be ineffective in range of visible light. Therefore, many efforts have been directed at improving their activity such as: band-gap narrowing with non-metal element doping and making composites with high specific surface area to effectively separate electrons and holes. In this paper, the method was introduced to prepare a photo-active catalyst to visible irradiation by making a mixture with $TiO_2$ and $WO_3$. In the $TiO_2-WO_3$ composite, $WO_3$ absorbs visible light creating excited electrons and holes while some of the excited electrons move to $TiO_2$ and the holes remain in $WO_3$. This charge separation reduces electron-hole recombination resulting in an enhancement of photocatalytic activity. Added Ag plays the role of electron acceptor, retarding the recombination rate of excited electrons and holes. In making a mixture of $TiO_2-WO_3$ composite, the mixing route affects the photocatalytic activity. The planetary ball-mill method is more effective than magnetic stirring route, owing to a more effective dispersion of aggregated powders. The volume ratio of $TiO_2(4)$ and $WO_3(6)$ shows the most effective photocatalytic activity in the range of visible light in the view point of effective separation of electrons and holes.
Keywords
$WO_3$ powder; $TiO_2$ powder; visible-light; photocatalysts; Planetary milling;
Citations & Related Records
연도 인용수 순위
  • Reference
1 J. A. Turner: Science, 305 (2004) 972.   DOI   ScienceOn
2 C. Khare, K. Sliozberg, R. Meyer, A. Savan, W. Schuhmann and A. Ludwig: www.elsevier.com/locate/he(international).
3 I. M. Arabatzis, T. Stergiopoulos, M. C. Bernard, D. Labou, S. G. Neophytides and P. Falaras: Appl. Catal. B: Environ., 42 (2003) 187.   DOI   ScienceOn
4 J. Sa, M. Fernandez-Garcia and J. A. Anderson: Catal. Commun., 9 (2008) 1991.   DOI   ScienceOn
5 A. B. Murphy, P. R. F. Barnes, L. K. Randeniya, I. C. Plumb, I. E. Grey and M. D. Horne: Int. J. Hydrogen Energy, 31 (2006) 1999.   DOI   ScienceOn
6 R. V. D. Krol, Y. Q. Liang and J. Schoonman: J. Mater. Chem., 18 (2008) 2311.   DOI   ScienceOn
7 J. F. Wager: Thin Solid Films, 516 (2008) 1755.   DOI   ScienceOn
8 I. C. Kang, Q. Zhang, J. Kano, S. Yin, T. Sato and F. Saito: J. Photochem. Photobiol. A: Chem., 189 (2007) 232.   DOI   ScienceOn
9 I. C. Kang, Q. Zhang, S. Yin, T. Sato and F. Saito: Appl. Catal. B: Environmental, 80 (2008) 81.   DOI   ScienceOn
10 M. Anpo and M. Takeuchi: J. Catal., 216 (2003) 505.   DOI   ScienceOn
11 I. C. Kang, Q. Zhang, S. Yin, T. Sato and F. Saito: Environ. Sci. Technol., 42 (2008) 3622.   DOI   ScienceOn
12 T. Ohno, K. Tokieda, S. Higashida and M. Matsumura: Appl. Catal. A; General, 244 (2003) 383.   DOI   ScienceOn
13 V. Puddu, R. Mokaya and G. L. Puma: Chem. Commun., 45 (2007) 4749.
14 W. Smith, A. Wolcott, R.C. Fitzmorris, J. Z. Zhang and Y. P. Zhao: J. Mater. Chem., 21 (2011) 10792.   DOI   ScienceOn
15 X. Z. Li, F. B. Li, C. L. Yang and W. K. Ge: J. Photochem. Photobiol. A, 141 (2001) 209.   DOI   ScienceOn
16 C. H. Li, Y. H. Hsieh, W. T. Chiu, C. C. Liu and C. L. Kao: Separation and Purification Techno., 58 (2007) 148.   DOI   ScienceOn