Browse > Article
http://dx.doi.org/10.5012/bkcs.2010.31.7.1941

Visible-light Photocatalytic Activity of BiOCl/Bi3O4Cl Nanocomposites  

Gao, Bifen (Department of Chemistry, Inha University)
Chakraborty, Ashok Kumar (Department of Chemistry, Inha University)
Yang, Ji-Min (Indian Springs School)
Lee, Wan-In (Department of Chemistry, Inha University)
Publication Information
Abstract
The heterojunction structures of BiOCl/$Bi_3O_4Cl$, exhibiting considerable visible-light photocatalytic efficiency, were prepared by a simple wet-chemical process at ambient condition. The prepared nanocomposites were characterized by XRD, TEM, and UV-visible diffuse reflectance spectra. Under visible light (${\lambda}\geq$420 nm) irradiation, BiOCl/$Bi_3O_4Cl$ exhibited an enhanced photocatalytic activity in decomposing 2-propanol (IP) in gas phase and salicylic acid (SA) in aqueous solution, whereas the bare BiOCl and $Bi_3O_4Cl$ showed negligible activities. It is deduced that the remarkable visible-light photocatalytic activity of the BiOCl/$Bi_3O_4Cl$ originates from the hole $(h^+)$ transfer between VB of the $Bi_3O_4Cl$ and BiOCl semiconductors.
Keywords
Photocatalyst; Visible light; BiOCl; $Bi_3O_4Cl$; Heterojunction;
Citations & Related Records
Times Cited By KSCI : 1  (Citation Analysis)
Times Cited By Web Of Science : 6  (Related Records In Web of Science)
Times Cited By SCOPUS : 6
연도 인용수 순위
1 Zhang, K. L.; Liu, C. M.; Huang, F. Q.; Zheng, C.; Wang, W. D. Appl. Catal. B: Environ. 2006, 68, 125.   DOI
2 Chai, S. Y.; Kim, Y. J.; Jung, M. H.; Chakraborty, A. K.; Jung, D.; Lee, W. I. J. Catal. 2009, 262, 144.   DOI
3 Kwon, Y. T.; Song, K. Y.; Lee, W. I.; Choi, G. J.; Do, Y. R. J. Catal. 2000, 191, 192.   DOI
4 Zhang, H.; Banfield, J. F. J. Phys. Chem. B 2000, 104, 3481.   DOI
5 Zhang, L.; Wang, W.; Yang, J.; Chen, Z.; Zhang, W.; Zhou, L.; Liu, S. Appl. Catal. A: Gen. 2006, 308, 105.   DOI
6 Ginley, D. S.; Butler, M. A. J. Appl. Phys.1977, 48, 2019.   DOI   ScienceOn
7 Ezema, F. I. Pac. J. Sci. Tech. 2005, 6, 6.
8 Kudo, A.;Omori, K.; Kato, H. J. Am. Chem. Soc. 1999, 121, 11459.   DOI
9 Fu, W. T. Physica C 1995, 250, 67.   DOI
10 Wang, W.; Huang, F.; Lin, X. Scripta Mater. 2007, 56, 669.   DOI
11 Lin, X. P.; Huang, T.; Huang, F. Q.; Wang, W. D.; Shi, J. L. J. Phys. Chem. B 2006, 110, 24629.   DOI   ScienceOn
12 Oshikiri, M.; Boero, M.; Ye, J.; Zou, Z.; Kido, G. J. Chem. Phys. 2002, 117, 7313.   DOI
13 Gao, B.; Kim, Y. J.; Chakraborty, A. K.; Lee, W. I. Appl. Catal. B:Environ. 2008, 83, 202.   DOI
14 Kim, Y. J.; Gao, B.; Han, S. Y.; Jung, M. H.; Chakraborty, A. K.; Ko, T.; Lee, C.; Lee, W. I. J. Phys. Chem. C 2009, 113, 19179.   DOI
15 Rawal, S. B.; Chakraborty, A. K.; Lee, W. I. Bull. Korean Chem. Soc. 2009, 30, 2613.   DOI
16 Zou, Z.; Ye, J.; Sayama, K.; Arakawa, H. Nature 2001, 414, 625.   DOI
17 Xu, T. G.; Zhang, C.; Shao, X.; Wu, K.; Zhu, Y. F. Adv. Funct. Mater. 2006, 16, 1599.   DOI
18 Ipe, B. I.; Niemeyer, G. M. Angew. Chem. Int. Ed. 2006, 45, 504.   DOI
19 Hoffmann, M. R.; Martin, S. T.; Choi, W.; Bahnemann, D. W. Chem. Rev. 1995, 95, 69.   DOI
20 Tachikawa, T.; Tojo, S.; Fujitsuka, M.; Majima, T. Chem. Eur. J. 2006, 12, 3124.   DOI
21 Murase, T.; Irie, H.; Hashimoto, K. J. Phys. Chem. B 2005, 109, 13420.   DOI
22 Hou, Y.; Wang, X.; Wu, L.; Ding, Z.; Fu, X. Environ. Sci. Technol. 2006, 40, 5799.   DOI
23 Alvaro, M.; Aprile, C.; Benitez, M.; Carbonell, E.; García, H. J. Phys. Chem. B 2006, 110, 6661.   DOI
24 Zhang, Y.; Li, J.; Wang, J. Chem. Mater. 2006, 18, 2917.   DOI
25 Han, S.; Choi, S.-H.; Kim, S.-S.; Cho, M.; Jang, B.; Kim, D.-Y.; Yoon, J.; Hyeon, T. Small 2005, 1, 812.   DOI
26 Yao, W.; Wang, H.; Xu, X.; Shang, S.; Hou, Y.; Zhang, Y.; Wang, M. Mater. Lett. 2003, 57, 1899.   DOI