Browse > Article
http://dx.doi.org/10.4283/JMAG.2016.21.2.179

Facile Synthesis of Flower-like Superparamagnetic Fe3O4/BiOCl Nanocomposites as High Effective Magnetic Recyclable Photocatalyst under Visible Light  

Wang, Wei (School of Materials Science and Engineering, Southwest University of Science and Technology)
He, Mingyi (School of Materials Science and Engineering, Southwest University of Science and Technology)
Zhang, Huan (School of Materials Science and Engineering, Southwest University of Science and Technology)
Dai, Yatang (School of Materials Science and Engineering, Southwest University of Science and Technology)
Publication Information
Abstract
In this paper, 10 nm $Fe_3O_4$ nanoparticles were modified on the surface of $2{\mu}m$ flower-like bismuth oxychloride (BiOCl) spheres by a facile co-precipitation method. The results showed that the $Fe_3O_4/BiOCl$ nanocomposites exhibited excellent photocatalytic activity and superparamagnetic property ($M_s=3.22emu/g$) under visible light for Rhodamine B (RhB) degradation. Moreover, the $Fe_3O_4-BiOCl$ photocatalyst possessed magnetic recyclable property, which could maintain high photocatalytic effective even after 20 cycle times. These characteristic indicates a promising application for wastewater treatment.
Keywords
magnetic nanoparticles; bismuth oxychloride (BiOCl); photocatalysts; superparamagnetic;
Citations & Related Records
연도 인용수 순위
  • Reference
1 Z. Zhu, Z. Y. Lu, D. D. Wang, X. Tang, Y. S. Yan, W. D. Shi, Y. S. Wang, N. L. Gao, X. Yao, and H. J. Dong, Appl. Catal. B-Environ. 182, 115 (2016).   DOI
2 F. Deng, X. Lu, F. Zhong, X. Pei, X. Luo, S. Luo, D. D. Dionysiou, and C. Au, Nanotechnology. 27, 065701 (2015).
3 X. Mao, C. Fan, Y. Wang, Y. Wang, and X. Zhang, Appl. Surf. Sci. 317, 517 (2014).   DOI
4 P. Zhang, Z. L. Mo, L. J. Han, Y. W. Wang, G. P. Zhao, C. Zhang, and Z. Li, J. Mol. Catal. a-Chem. 402, 17 (2015).   DOI
5 Z. Zhu, Z. Y. Lu, X. X. Zhao, Y. S. Yan, W. D. Shi, D. D. Wang, L. L. Yang, X. Lin, Z. F. Hua, and Y. Liu, Rsc Adv. 5, 40726 (2015).   DOI
6 S. L. Ma, S. H. Zhan, Y. N. Jia, and Q. X. Zhou, ACS Appl. Mater. Interfaces. 7, 21875 (2015).   DOI
7 P. H. Shao, J. Y. Tian, B. R. Liu, W. X. Shi, S. S. Gao, Y. L. Song, M. Ling, and F. Y. Cui, Nanoscale. 7, 14254 (2015).   DOI
8 L. Zhang, W. Z. Wang, L. Zhou, M. Shang, and S. M. Sun, Appl. Catal. B-Environ. 90, 458 (2009).   DOI
9 C. W. Tan, G. Q. Zhu, M. Hojamberdiev, C. Xu, J. Liang, P. F. Luo, and Y. Liu, J. Clust. Sci. 24, 1115 (2013).   DOI
10 J. Y. Bai, R. F. Zhao, and G. W. Diao, Curr. Nanosci. 11, 186 (2015).   DOI
11 X. Taiping, X. Longjun, L. Chenglun, Y. Jun, and W. Mei, Dalton Trans. 43, 2211 (2014).   DOI
12 N. Liu, V. Haublein, X. M. Zhou, U. Venkatesan, M. Hartmann, M. Mackovic, T. Nakajima, E. Spiecker, A. Osvet, L. Frey, and P. Schmuki, Nano Lett. 15, 6815 (2015).   DOI
13 K. W. Shen, F. Ran, X. X. Zhang, C. Liu, N. J. Wang, X. Q. Niu, Y. Liu, D. J. Zhang, L. B. Kong, L. Kang, and S. W. Chen, Synth. Met. 209, 369 (2015).   DOI
14 M. Abdallah and M. E. Moustafa, Annal. Chim. 94, 601 (2004).   DOI
15 T. D. Nguyen-Phan, S. Luo, Z. Y. Liu, A. D. Gamalski, J. Tao, W. Q. Xu, E. A. Stach, D. E. Polyansky, S. D. Senanayake, E. Fujita, and J. A. Rodriguez, Chem. Mater. 27, 6282 (2015).   DOI
16 D. I. Won, J. S. Lee, J. M. Ji, W. J. Jung, H. J. Son, C. Pac, and S. O. Kang, J. Am. Chem. Soc. 137, 13679 (2015).   DOI
17 W. K. Zhang and K. J. Gaffney, Acc. Chem. Res. 48, 1140 (2015).   DOI