DOI QR코드

DOI QR Code

Preparation and Reduction Effect of Volatile Compounds of TiO2 Hemispheres

  • Cho, Bongrae (Department of Applied Chemistry, Cheongju University)
  • Received : 2019.02.06
  • Accepted : 2019.02.22
  • Published : 2019.06.20

Abstract

Keywords

JCGMDC_2019_v63n3_213_f0001.png 이미지

Figure 1. SEM image of TiO2 hemispheres with 0.5% Cr3+ calcinated at 600 oC.

JCGMDC_2019_v63n3_213_f0002.png 이미지

Figure 2. Mechanism proposed for the action of TiO2.

JCGMDC_2019_v63n3_213_f0003.png 이미지

Figure 3. Difference in the deodorization rates of toluene, trimethylamine and ammonia by TiO2 hemispheres with and without strong acid pretreatment. The values are the averages of three separated experiments.

Table 1. Deodorization rate of toluene, trimethylamine and ammonia by an ABS copolymer coated with Ti/Cr hemispheres.

JCGMDC_2019_v63n3_213_t0001.png 이미지

References

  1. Fujishima, A.; Honda, K. Nature 1972, 238, 37. https://doi.org/10.1038/238037a0
  2. Cho, M.; Chung, H.; Choi, W.; Yoon, J. Water Res. 2004, 38, 1069. https://doi.org/10.1016/j.watres.2003.10.029
  3. Ditta, I. B.; Steele, A.; Liptrot, C.; Tobin, J.; Tyler, J.; Yates, H. M.; Sheel, D. W.; Foster, H. A. Appl. Microbiol. Biotechnol. 2008, 79, 127. https://doi.org/10.1007/s00253-008-1411-8
  4. Sang, X.; Phan, T. G.; Sugihara, S.; Yagyu, F.; Okitsu, S.; Maneekarn, N.; Muller, W. E. G.; Ushijima, H. Clin. Lab. 2007, 53, 413.
  5. Shieh, K.-J.; Li, M.; Lee, Y.-H.; Sheu, S.-D.; Liu, Y.-T.; Wang, Y.-C. Nanomedicine 2006, 2, 121. https://doi.org/10.1016/j.nano.2006.04.001
  6. Wu, P.; Xie, R.; Imlay, J. A.; Shang, J. K. Appl. Catal. B: Environ. 2009, 88, 576. https://doi.org/10.1016/j.apcatb.2008.12.019
  7. Liga, M. V.; Bryant, E. L.; Colvin, V. L.; Li, Q. Water Res. 2011, 45, 535. https://doi.org/10.1016/j.watres.2010.09.012
  8. Kim, M. C. Anal. Sci. Technol. 2011, 24, 493. https://doi.org/10.5806/AST.2011.24.6.493
  9. Iwasaki, M.; Hara, M.; Kawada, H.; Tada, S.; Ito, J. J. Colloid Interface Sci. 2000, 224, 202. https://doi.org/10.1006/jcis.1999.6694
  10. Litter, M. I. Appl. Catal. B: Environ. 1999, 23, 89. https://doi.org/10.1016/S0926-3373(99)00069-7
  11. Asahi, R.; Morikawa, T.; Ohwaki, T.; Aoki, K.; Taga, K. Science 2001, 293, 269. https://doi.org/10.1126/science.1061051
  12. Yang, S.; Gao, L. J. Am. Ceram. Soc. 2004, 87, 1803. https://doi.org/10.1111/j.1551-2916.2004.01803.x
  13. Irie, H.; Watanabe, Y.; Hashimoto, K. J. Phys. Chem. B 2003, 107, 5483. https://doi.org/10.1021/jp030133h
  14. Wu, P. G.; Ma, C. H.; Shang, J. K. Appl. Phys. A 2005, 81, 1411. https://doi.org/10.1007/s00339-004-3101-4
  15. Takehara, K.; Yamazaki, K.; Miyazaki, M.; Yamada, Y.; Ruenphet, S.; Jahangir, A.; Shoham, D.; Okamura, M.; Nakamura, M. Virus Res. 2010, 151, 102. https://doi.org/10.1016/j.virusres.2010.03.006
  16. Li, M.; Huang, Q. Z.; Qiu, D. F.; Jiao, Z. J.; Meng, Z. H.; Shi, H. Z. Chin. Chem. Lett. 2010, 21, 117. https://doi.org/10.1016/j.cclet.2009.06.038
  17. Sunada, K.; Watanabe, T.; Hashimoto, K. J. Photochem. Photobiol. A: Chem. 2003, 156, 227. https://doi.org/10.1016/S1010-6030(02)00434-3
  18. Caballero, L.; Whitehead, K. A.; Allen, N. S.; Verran, J. J. Photochem. Photobiol. A: Chem. 2009, 202, 92. https://doi.org/10.1016/j.jphotochem.2008.11.005
  19. Caruso, F. Chem. Eur. J. 2000, 6, 413. https://doi.org/10.1002/(SICI)1521-3765(20000204)6:3<413::AID-CHEM413>3.0.CO;2-9
  20. Kim, H. R.; Eom, Y.; Lee, T. G.; Shul, Y.-G. Mater. Chem. Phys. 2008, 108, 154. https://doi.org/10.1016/j.matchemphys.2007.09.018
  21. Cho, B. Bull. Korean Chem. Soc. 2018, 39, 563. https://doi.org/10.1002/bkcs.11411
  22. Liang, W.; Li, J.; He, H. In Advanced Aspects of Spectroscopy; IntechOpen: 2012, p 341.