DOI QR코드

DOI QR Code

Visible-light Photocatalytic Activity of BiOCl/Bi3O4Cl Nanocomposites

  • Received : 2010.03.10
  • Accepted : 2010.05.28
  • Published : 2010.07.20

Abstract

The heterojunction structures of BiOCl/$Bi_3O_4Cl$, exhibiting considerable visible-light photocatalytic efficiency, were prepared by a simple wet-chemical process at ambient condition. The prepared nanocomposites were characterized by XRD, TEM, and UV-visible diffuse reflectance spectra. Under visible light (${\lambda}\geq$420 nm) irradiation, BiOCl/$Bi_3O_4Cl$ exhibited an enhanced photocatalytic activity in decomposing 2-propanol (IP) in gas phase and salicylic acid (SA) in aqueous solution, whereas the bare BiOCl and $Bi_3O_4Cl$ showed negligible activities. It is deduced that the remarkable visible-light photocatalytic activity of the BiOCl/$Bi_3O_4Cl$ originates from the hole $(h^+)$ transfer between VB of the $Bi_3O_4Cl$ and BiOCl semiconductors.

Keywords

References

  1. Zou, Z.; Ye, J.; Sayama, K.; Arakawa, H. Nature 2001, 414, 625. https://doi.org/10.1038/414625a
  2. Xu, T. G.; Zhang, C.; Shao, X.; Wu, K.; Zhu, Y. F. Adv. Funct. Mater. 2006, 16, 1599. https://doi.org/10.1002/adfm.200500849
  3. Ipe, B. I.; Niemeyer, G. M. Angew. Chem. Int. Ed. 2006, 45, 504. https://doi.org/10.1002/anie.200503084
  4. Hoffmann, M. R.; Martin, S. T.; Choi, W.; Bahnemann, D. W.Chem. Rev. 1995, 95, 69. https://doi.org/10.1021/cr00033a004
  5. Tachikawa, T.; Tojo, S.; Fujitsuka, M.; Majima, T. Chem. Eur. J.2006, 12, 3124. https://doi.org/10.1002/chem.200501077
  6. Murase, T.; Irie, H.; Hashimoto, K. J. Phys. Chem. B 2005, 109,13420. https://doi.org/10.1021/jp050423t
  7. Hou, Y.; Wang, X.; Wu, L.; Ding, Z.; Fu, X. Environ. Sci. Technol.2006, 40, 5799. https://doi.org/10.1021/es061004s
  8. Alvaro, M.; Aprile, C.; Benitez, M.; Carbonell, E.; García, H. J. Phys. Chem. B 2006, 110, 6661. https://doi.org/10.1021/jp0573240
  9. Zhang, Y.; Li, J.; Wang, J. Chem. Mater. 2006, 18, 2917. https://doi.org/10.1021/cm060450b
  10. Han, S.; Choi, S.-H.; Kim, S.-S.; Cho, M.; Jang, B.; Kim, D.-Y.;Yoon, J.; Hyeon, T. Small 2005, 1, 812. https://doi.org/10.1002/smll.200400142
  11. Yao, W.; Wang, H.; Xu, X.; Shang, S.; Hou, Y.; Zhang, Y.; Wang,M. Mater. Lett. 2003, 57, 1899. https://doi.org/10.1016/S0167-577X(02)01097-2
  12. Wang, W.; Huang, F.; Lin, X. Scripta Mater. 2007, 56, 669. https://doi.org/10.1016/j.scriptamat.2006.12.023
  13. Lin, X. P.; Huang, T.; Huang, F. Q.; Wang, W. D.; Shi, J. L. J. Phys. Chem. B 2006, 110, 24629. https://doi.org/10.1021/jp065373m
  14. Zhang, K. L.; Liu, C. M.; Huang, F. Q.; Zheng, C.; Wang, W. D.Appl. Catal. B: Environ. 2006, 68, 125. https://doi.org/10.1016/j.apcatb.2006.08.002
  15. Chai, S. Y.; Kim, Y. J.; Jung, M. H.; Chakraborty, A. K.; Jung, D.;Lee, W. I. J. Catal. 2009, 262, 144. https://doi.org/10.1016/j.jcat.2008.12.020
  16. Kwon, Y. T.; Song, K. Y.; Lee, W. I.; Choi, G. J.; Do, Y. R. J. Catal.2000, 191, 192. https://doi.org/10.1006/jcat.1999.2776
  17. Zhang, H.; Banfield, J. F. J. Phys. Chem. B 2000, 104, 3481. https://doi.org/10.1021/jp000499j
  18. Zhang, L.; Wang, W.; Yang, J.; Chen, Z.; Zhang, W.; Zhou, L.; Liu,S. Appl. Catal. A: Gen. 2006, 308, 105. https://doi.org/10.1016/j.apcata.2006.04.016
  19. Ginley, D. S.; Butler, M. A. J. Appl. Phys.1977, 48, 2019. https://doi.org/10.1063/1.323911
  20. Ezema, F. I. Pac. J. Sci. Tech. 2005, 6, 6.
  21. Kudo, A.;Omori, K.; Kato, H. J. Am. Chem. Soc. 1999, 121, 11459. https://doi.org/10.1021/ja992541y
  22. Fu, W. T. Physica C 1995, 250, 67. https://doi.org/10.1016/0921-4534(95)00266-9
  23. Oshikiri, M.; Boero, M.; Ye, J.; Zou, Z.; Kido, G. J. Chem. Phys.2002, 117, 7313. https://doi.org/10.1063/1.1507101
  24. Gao, B.; Kim, Y. J.; Chakraborty, A. K.; Lee, W. I. Appl. Catal. B:Environ. 2008, 83, 202. https://doi.org/10.1016/j.apcatb.2008.02.017
  25. Kim, Y. J.; Gao, B.; Han, S. Y.; Jung, M. H.; Chakraborty, A. K.;Ko, T.; Lee, C.; Lee, W. I. J. Phys. Chem. C 2009, 113, 19179. https://doi.org/10.1021/jp908874k
  26. Rawal, S. B.; Chakraborty, A. K.; Lee, W. I. Bull. Korean Chem. Soc. 2009, 30, 2613. https://doi.org/10.5012/bkcs.2009.30.11.2613

Cited by

  1. Preparation and characterization of WO3/Bi3O4Cl nanocomposite and its photocatalytic behavior under visible light irradiation vol.106, pp.1, 2012, https://doi.org/10.1007/s11144-012-0423-7
  2. Double-heterojunction structure of SbxSn1-xO2/TiO2/CdSe for efficient decomposition of gaseous 2-propanol under visible-light irradiation vol.2, pp.2, 2012, https://doi.org/10.1039/C1RA00551K
  3. Fabrication of reduced graphene oxide–BiOCl hybrid material via a novel benzyl alcohol route and its enhanced photocatalytic activity vol.15, pp.9, 2013, https://doi.org/10.1007/s11051-013-1917-6
  4. Recent advances in BiOX (X = Cl, Br and I) photocatalysts: synthesis, modification, facet effects and mechanisms vol.1, pp.2, 2014, https://doi.org/10.1039/c3en00098b
  5. Bismuth oxyhalide nanomaterials: layered structures meet photocatalysis vol.6, pp.15, 2014, https://doi.org/10.1039/C4NR02553A
  6. Novel plate-stratiform nanostructured Bi12O17Cl2 with visible-light photocatalytic performance vol.31, pp.01, 2016, https://doi.org/10.1017/S0885715615000901
  7. Preparation and photocatalytic performance of the Mn/BiOCl albizia flower vol.42, pp.9, 2016, https://doi.org/10.1007/s11164-016-2514-y
  8. Facile fabrication of plate-like Bi3O4Cl for visible-light-driven photocatalytic degradation of tetracycline hydrochloride pp.1750-0443, 2017, https://doi.org/10.1049/mnl.2017.0490
  9. Influence of Mn2+ Ion on the Surface of BiOCl Catalyst for Photocatalytic Degradation of Methylene Green under Visible Light Illumination vol.764, pp.1662-9752, 2013, https://doi.org/10.4028/www.scientific.net/MSF.764.194
  10. /BiOCl (A = Mg, Sr, Ca) Heterojunction vol.39, pp.9, 2018, https://doi.org/10.1002/bkcs.11542
  11. Synthesis and characterization of BiOCl–Cu2ZnSnS4 heterostructure with enhanced photocatalytic activity vol.8, pp.7, 2018, https://doi.org/10.1007/s13201-018-0853-0
  12. Photocatalytic mineralization study of malachite green on the surface of Mn-doped BiOCl activated by visible light under ambient condition vol.258, pp.1, 2010, https://doi.org/10.1016/j.apsusc.2011.08.040
  13. Microwave-assisted aging synthesis of bismuth modified zeolite-P microspheres via BiOCl nanoflake transformation vol.167, pp.None, 2010, https://doi.org/10.1016/j.micromeso.2012.02.012
  14. AgI/AgCl/H2WO4 Double Heterojunctions Composites: Preparation and Visible-Light Photocatalytic Performance vol.35, pp.2, 2010, https://doi.org/10.5012/bkcs.2014.35.2.441
  15. Triple‐Mode Bi2WO6/Pg‐C3N4@rGO Core‐Shell Synergistic Effect with Enhanced Light‐induced Photocatalytic Activity vol.40, pp.3, 2010, https://doi.org/10.1002/bkcs.11675
  16. Bismuth oxychloride nanosheets for improvement of flexible poly (vinyl chloride) flame retardancy vol.55, pp.2, 2010, https://doi.org/10.1007/s10853-019-04048-9
  17. Synthesis of Mn/NiO and Mn/BiOCl nanoparticles for degradation of Nile blue dye contaminated water under visible light illumination vol.38, pp.6, 2010, https://doi.org/10.1080/02726351.2019.1570991
  18. Enhancing the photocatalytic efficiency of the BiOCl/Bi3O4Cl composite modified with WO3 for environmental purification under visible light vol.45, pp.37, 2021, https://doi.org/10.1039/d1nj02825a
  19. Di-functional Cu2+-doped BiOCl photocatalyst for degradation of organic pollutant and inhibition of cyanobacterial growth vol.424, pp.no.pc, 2010, https://doi.org/10.1016/j.jhazmat.2021.127554