• Title/Summary/Keyword: Viscoelastic liquid

Search Result 44, Processing Time 0.019 seconds

Hydrogel microrheology near the liquid-solid transition

  • Larsen, Travis;Schultz, Kelly;Furst, Eric M.
    • Korea-Australia Rheology Journal
    • /
    • v.20 no.3
    • /
    • pp.165-173
    • /
    • 2008
  • Multiple particle tracking microrheology is used to characterize the viscoelastic properties of biomaterial and synthetic polymer gels near the liquid-solid transition. Probe particles are dispersed in the gel precursors, and their dynamics are measured as a function of the extent of reaction during gel formation. We interpret the dynamics using the generalized Stokes-Einstein relationship (GSER), using a form of the GSER that emphasizes the relationship between the probe particle mean-squared displacement and the material creep compliance. We show that long-standing concepts in gel bulk rheology are applicable to microrheological data, including time-cure superposition to identify the gel point and critical scaling exponents, and the power-law behavior of incipient network's viscoelastic response. These experiments provide valuable insight into the rheology, structure, and kinetics of gelling materials, and are especially powerful for studying the weak incipient networks of dilute gelators, as well as scarce materials, due to the small sample size requirements and rapid data acquisition.

Numerical result of complex quick time behavior of viscoelastic fluids in flow domains with traction boundaries

  • Kwon, Young-Don
    • Korea-Australia Rheology Journal
    • /
    • v.19 no.4
    • /
    • pp.211-219
    • /
    • 2007
  • Here we demonstrate complex transient behavior of viscoelastic liquid described numerically with the Leonov model in straight and contraction channel flow domains. Finite element and implicit Euler time integration methods are employed for spatial discretization and time marching. In order to stabilize the computational procedure, the tensor-logarithmic formulation of the constitutive equation with SUPG and DEVSS algorithms is implemented. For completeness of numerical formulation, the so called traction boundaries are assigned for flow inlet and outlet boundaries. At the inlet, finite traction force in the flow direction with stress free condition is allocated whereas the traction free boundary is assigned at the outlet. The numerical result has illustrated severe forward-backward fluctuations of overall flow rate in inertial straight channel flow ultimately followed by steady state of forward flow. When the flow reversal occurs, the flow patterns exhibit quite complicated time variation of streamlines. In the inertialess flow, it takes much more time to reach the steady state in the contraction flow than in the straight pipe flow. Even in the inertialess case during startup contraction flow, quite distinctly altering flow patterns with the lapse of time have been observed such as appearing and vanishing of lip vortices, coexistence of multiple vortices at the contraction comer and their merging into one.

A Study on the Liquid Crystal Formed in PLO Gel Containing Ceramide NP (Ceramide NP 를 함유한 PLO Gel 에서 형성되는 액정에 관한 연구)

  • Heo, Min Geun;Yoon, Kyung-Sup
    • Journal of the Society of Cosmetic Scientists of Korea
    • /
    • v.47 no.1
    • /
    • pp.85-92
    • /
    • 2021
  • The stratum corneum is formed from keratinocytes and intercellular lipids, with ceramide as the main component of intercellular lipids. Ceramides are one of the important components of the intercellular lipids to form a lamellar structure, but they are insoluble and therefore are not suitable for direct application to the skin. Thus, it was intended to apply ceramide to the formulation of pluronic lecithin organogel (PLO gel), which received constant attention among drug delivery systems. A suitable oil for formulation was selected and a PLO gel containing ceramide was manufactured. Liquid crystal formation and variation were observed using polarized microscopes, and viscoelastic analysis was performed to find out the viscoelastic behavior of the PLO gel. Small-angle X-ray scattering (SAXS) and wide-angle X-ray scattering (WAXS) analysis were performed to confirm the structures in the formulation. Results showed that the size and stability of the liquid crystal differed depending on the content ratio of ceramide and lecithin in the PLO gel containing ceramide. Furthermore, viscoelastic analysis showed the stability of the formulation, and SAXS/WAXS analysis confirmed that the PLO gel without ceramide had hexagonal structure of the quadrilateral system array, and the PLO gel with ceramide had the lamellar structure of the quadrilateral system array.

A Numerical Study on the Planar Contraction Flow of Oldroyd B Fluids (Oldroyd B 유체의 평면 수축 유동에 관한 수치 해석적 연구)

  • Yoo, Jung-Yul;Na, Yang
    • The Korean Journal of Rheology
    • /
    • v.2 no.1
    • /
    • pp.33-45
    • /
    • 1990
  • This study analyzes the planar 4:1 contraction flow of viscoelastic fluids with retardation time using finite volume method. To consider separately the elasticity effect of the viscoelastic fluid without shear thinn-ing effect, Oldroyd B liquid model is adopted for the numerical simulation. Instead of the stream function-vorticity formulation, SIMPLER algorithm with staggered grid system which incorporates primitive variable has been introduced in discretizing the momentum equations. An upwind corrected scheme has been used in discetizing the constitutive equations for the non-Newtonian part of the stress. The size of the corner vortex is shown to be slightly influenced by the Weissenberg number. However as the Weissenberg number is increased the chang-ing of the vortex shape agrees qualitatively well with some experimental studies.

  • PDF

Effect of the rheological properties of aqueous xanthan gum solution on chemical absorption of carbon dioxide with diisopropanolamine

  • Son, Young-Sik;Park, Sang-Wook;Park, Dae-Won;Lee, Jae-Wook
    • Korea-Australia Rheology Journal
    • /
    • v.21 no.2
    • /
    • pp.109-117
    • /
    • 2009
  • Absorption rate of carbon dioxide was measured in the aqueous xanthan gum (XG) solution in the range of 0~0.15 wt% containing diisopropanolamine (DIPA) of $0{\sim}2\;kmol/m^3$ in a flat-stirred vessel with an impeller of 0.05 m and agitation speed of 50 rpm at $25^{\circ}C$ and 101.3 kPa. The volumetric liquid-side mass transfer coefficient ($k_La$) of $CO_2$, which was obtained by the measured physical absorption rate, was correlated with the viscosity and the elastic behavior of XG solution such as Deborah number as an empirical formula. The chemical absorption rate of $CO_2$ ($R_A$), which was estimated by the film theory using the measured $k_La$ and the known kinetics of reaction between $CO_2$ and DIPA, was compared with the measured rate. The aqueous XG solution with elastic property of non-Newtonian liquid made $k_La$ and $R_A$ increased compared with Newtonian liquid based on the same viscosity of the solution.

Effect of elasticity of aqueous xanthan gum solution with 2-amino-methyl-1-propanol on chemical absorption of carbon dioxide

  • Park, Sang-Wook;Choi, Byoung-Sik;Song, Ki-Won;Lee, Jae-Wook
    • Korea-Australia Rheology Journal
    • /
    • v.20 no.1
    • /
    • pp.1-6
    • /
    • 2008
  • Absorption rate of carbon dioxide was measured in the aqueous xanthan gum (XG) solution in the range of 0-0.15 wt% containing 2-amino-2-methyl-1-propanol (AMP) of $0-2\;kmol/m^3$ in a flat-stirred vessel with an impeller of 0.05m and agitation speed of 50rpm at $25^{\circ}C$ and 0.101 MPa. The volumetric liquid-side mass transfer coefficient ($k_La$) of $CO_2$, which was correlated with the viscosity and the elastic behavior of XG solution containing Deborah number as an empirical formula, was used to estimate the chemical absorption rate of $CO_2\;(R_A)$. $R_A$, which was estimated by mass transfer mechanism based on the film theory using the physicochemical properties and the kinetics of reaction between $CO_2$ and AMP, was compared with the measured rate. The aqueous XG solution with elastic property of non-Newtonian liquid made $R_A$ increased compared with Newtonian liquid based on the same viscosity of the solution.

Polymer blends with a liquid crystalline polymer dispersed phase

  • Lee, Heon-Sang;Morton M. Denn
    • Korea-Australia Rheology Journal
    • /
    • v.11 no.4
    • /
    • pp.269-273
    • /
    • 1999
  • Immiscible polymer blends containing a liquid crystalline polymer dispersed phase can be described by existing blend theories when the dispersed-phase droplets are large relative to the orientation correlation length ("domain size") of the LCP. There does not appear to be an interfacial contribution to the linear viscoelastic properties of the blend from droplets smaller than the correlation length. Polyester blends, where interfacial interactions occur between the LCP and the matrix, exhibit a reduction in viscosity to below the viscosity of either component at low shear rates, where the droplet morphology is spherical. These anomalies cannot be explained in the context of existing theory.ng theory.

  • PDF

Deformation Analysis of Semi-Solid Aluminum Material Considering Seperation Phenomena of Solid Particles (고상입자의 분리현상을 고려한 Semi-Solid 알루미늄재료의 변형해석)

  • 최진석;강충길;김기훈
    • Proceedings of the Korean Society for Technology of Plasticity Conference
    • /
    • 1997.03a
    • /
    • pp.98-105
    • /
    • 1997
  • The behaviour of alloys in the semi-solid state strongly depends on the imposed stress state and on the morphology of the phase which can very from dendritic to globular. The estimation of behaviour characteristic in the compression simulation with seim-solid materials are calculated by finite element method with proposed algorithm. The proposed theoretical model and a various boundary conditions for compression process is investigated with the coupling calculation between the liquid phase flow and the solid phase deformation. The simulation process considering soldification phenomena is performed to the isothermal conditions of two dimensional problems. To analysis of compression process by using semi-solid materials, a new stress-strain relationship is described, and compression analysis is performed by viscoelastic model for the solid phase and the Darcy's law for the liquid flow. The calculated results for compression force and ram displacement will be compared to experimental data.

  • PDF

Numerical description of start-up viscoelastic plane Poiseuille flow

  • Park, Kwang-Sun;Kwon, Young-Don
    • Korea-Australia Rheology Journal
    • /
    • v.21 no.1
    • /
    • pp.47-58
    • /
    • 2009
  • We have investigated the transient behavior of 1D fully developed Poiseuille viscoelastic flow under finite pressure gradient described by the Oldroyd-B and Leonov constitutive equations. For analysis we employ a simple $2^{nd}$ order discretization scheme such as central difference for space and the Crank-Nicolson for time approximation. For the analysis of the Oldroyd-B model, we also apply the analytical solution, which is obtained again in this work in terms of elementary solution procedure simpler than the previous one (Waters and King, 1970). Both models demonstrate qualitatively similar solutions, but their eventual steady flowrate exhibits noticeable difference due to the absence or presence of shear thinning behavior. In the inertialess flow, the flowrate instantaneously attains a large value corresponding to the Newtonian creeping flow and then decreases to its steady value when the applied pressure gradient is low. However with finite liquid density the flow field shows severe fluctuation even accompanying reversals of flow directions. As the assigned pressure gradient increases, the flowrate achieves its steady value significantly higher than its value during oscillations after quite long period of time. We have also illustrated comparison between 1D and 2D results and possible mechanism of complex 2D flow rearrangement employing a previous solution of [mite element computation. In addition, we discuss some mathematical points regarding missing boundary conditions in 2D modeling due to the change of the type of differential equations when varying from inertialess to inertial flow.

Finite element analysis of viscoelastic flows in a domain with geometric singularities

  • Yoon, Sung-Ho;Kwon, Young-Don
    • Korea-Australia Rheology Journal
    • /
    • v.17 no.3
    • /
    • pp.99-110
    • /
    • 2005
  • This work presents results of finite element analysis of isothermal incompressible creeping viscoelastic flows with the tensor-logarithmic formulation of the Leonov model especially for the planar geometry with singular comers in the domain. In the case of 4:1 contraction flow, for all 5 meshes we have obtained solutions over the Deborah number of 100, even though there exists slight decrease of convergence limit as the mesh becomes finer. From this analysis, singular behavior of the comer vortex has been clearly seen and proper interpolation of variables in terms of the logarithmic transformation is demonstrated. Solutions of 4:1:4 contraction/expansion flow are also presented, where there exists 2 singular comers. 5 different types spatial resolutions are also employed, in which convergent solutions are obtained over the Deborah number of 10. Although the convergence limit is rather low in comparison with the result of the contraction flow, the results presented herein seem to be the only numerical outcome available for this flow type. As the flow rate increases, the upstream vortex increases, but the downstream vortex decreases in their size. In addition, peculiar deflection of the streamlines near the exit comer has been found. When the spatial resolution is fine enough and the Deborah number is high, small lip vortex just before the exit comer has been observed. It seems to occur due to abrupt expansion of the elastic liquid through the constriction exit that accompanies sudden relaxation of elastic deformation.