1 |
Fan, Y., R. I. Tanner and N. Phan-Thien, 1999, Galerkin/leastsquare finite-element methods for steady viscoelastic flows, J. Non-Newtonian Fluid Mech. 84, 233-256
DOI
ScienceOn
|
2 |
Hulsen, M. A., R. Fattal and R. Kupferman, 2005, Flow of viscoelastic fluids past a cylinder at high Weissenberg number: Stabilized simulations using matrix logarithms, J. Non-Newtonian Fluid Mech. 127, 27-39
DOI
ScienceOn
|
3 |
Fattal, R. and R. Kupferman, 2004, Constitutive laws of the matrix-logarithm of the conformation tensor, J. Non-Newtonian Fluid Mech. 123, 281-285
DOI
ScienceOn
|
4 |
Kwon, Y. and A. I. Leonov, 1995, Stability constraints in the formulation of viscoelastic constitutive equations, J. Non-Newtonian Fluid Mech. 58, 25-46
DOI
ScienceOn
|
5 |
Guenette, R. and M. Fortin, 1995, A new mixed finite element method for computing viscoelastic flows, J. Non-Newtonian Fluid Mech. 60, 27-52
DOI
ScienceOn
|
6 |
Leonov, A. I., 1976, Nonequilibrium thermodynamics and rheology of viscoelastic polymer media, Rheol. Acta 15, 85-98
DOI
|
7 |
Gupta, M., 1997, Viscoelastic modeling of entrance flow using multimode Leonov model, Int. J. Numer. Meth. Fluids 24, 493-517
DOI
|
8 |
Hulsen, M. A., 2004, Keynote presentation in Internatioan Congress on Rheology 2004, Seoul, Koreaa
|
9 |
Szabo, P., J. M. Rallison and E. J. Hinch, 1997, Start-up of flow of a FENE-fluid through a 4:1:4 constriction in a tube, J. Non-Newtonian Fluid Mech. 72, 73-86
DOI
ScienceOn
|
10 |
Kwon, Y., 2004, Finite element analysis of planar 4:1 contraction flow with the tensor-logarithmic formulation of differential constitutive equations, Korea-Australia Rheology J. 16, 183-191
|