Effect of the rheological properties of aqueous xanthan gum solution on chemical absorption of carbon dioxide with diisopropanolamine

  • Son, Young-Sik (Division of Chemical Engineering, Pusan National University) ;
  • Park, Sang-Wook (Division of Chemical Engineering, Pusan National University) ;
  • Park, Dae-Won (Division of Chemical Engineering, Pusan National University) ;
  • Lee, Jae-Wook (Department of Chemical and Biomolecular Engineering, Sogang University)
  • Received : 2009.01.29
  • Accepted : 2009.04.03
  • Published : 2009.06.30

Abstract

Absorption rate of carbon dioxide was measured in the aqueous xanthan gum (XG) solution in the range of 0~0.15 wt% containing diisopropanolamine (DIPA) of $0{\sim}2\;kmol/m^3$ in a flat-stirred vessel with an impeller of 0.05 m and agitation speed of 50 rpm at $25^{\circ}C$ and 101.3 kPa. The volumetric liquid-side mass transfer coefficient ($k_La$) of $CO_2$, which was obtained by the measured physical absorption rate, was correlated with the viscosity and the elastic behavior of XG solution such as Deborah number as an empirical formula. The chemical absorption rate of $CO_2$ ($R_A$), which was estimated by the film theory using the measured $k_La$ and the known kinetics of reaction between $CO_2$ and DIPA, was compared with the measured rate. The aqueous XG solution with elastic property of non-Newtonian liquid made $k_La$ and $R_A$ increased compared with Newtonian liquid based on the same viscosity of the solution.

Keywords

References

  1. Cussler, E. L., 1984, Diffusion, Cambridge University Press, New York, 118
  2. Danckwerts, P. V., 1970, Gas-Liquids Reactions, McGraw-Hill Book Co, New York, 117
  3. Danckwerts, P. V. and M. M. Sharma, 1966, The Absorption of carbon dioxide into solutions of alkalis and amines, Chem. Eng. 44, 244-280
  4. Galindo, E. and A. W. Nienow, 1992, Mixing of highly viscous simulated xanthan fermentation broths with the Lighynin A-315 impeller, Biochem. Prog. 8, 233-239
  5. Garcia-Ochoa, F. and E. Gomez, 1998, Mass transfer coefficient in stirred reactors for xanthan gum solutions, Biochem. Eng. J. 1, 1-10 https://doi.org/10.1016/S1369-703X(97)00002-8
  6. Herbst, H., A. Schumpe, and W. Decker, 1992, Xanthan production in stirred tank fermenters: Ogygen transfer and scaleup, Chem. Eng. Technol. 15, 425-434 https://doi.org/10.1002/ceat.270150610
  7. Hikita, H., S. Asai, and T. Takatsuka, 1976, Absorption of carbon dioxide into aqueous sodium hydroxide and sodium carbonatebicarbonate solutions, Chem. Eng. J. 11, 131-141 https://doi.org/10.1016/S0300-9467(76)80035-4
  8. Kennard, M. L. and A. Meisen, 1984, Solubility of carbon dioxide in aqueous diethanolamine solutions at levated temperature and pressures, J. Chem. Eng. Data, 29, 309-312 https://doi.org/10.1021/je00037a025
  9. Kessler. W. R., M. K. Popovic, and C. W. Robinson, 1993, Xanthan production in an eternal-circulation-loop airlift fermenter, Can. J. Chem. Eng. 71, 101-106 https://doi.org/10.1002/cjce.5450710114
  10. Metzner, A. B. and R. E. Otter, 1957, Agitation of non-Newtonian fluids, AIChE J. 3, 3-10 https://doi.org/10.1002/aic.690030103
  11. Messaoudi, B. and E. Sada, 1996, Kinetics of absorption of carbon dioxide into aqueous solutions of sterically hindered 2-amino-2-methyl-1-propanol, J. Chem. Eng., Japan, 29, 193-196 https://doi.org/10.1252/jcej.29.193
  12. Moo-Young, M. and Y. Kawase, 1987, Gas hold-up and mass transfer in a bubble column with viscoelastic fluids, Can. J. Chem. Eng. 65, 113-118 https://doi.org/10.1002/cjce.5450650118
  13. Nakanoh, M. and F. Yoshida, 1980, Gas absorption by Newtonian and non-Newtonian liquids in a bubble column, Ind. Eng. Chem. Process Des. Dev. 19, 190-195 https://doi.org/10.1021/i260073a033
  14. Nijsing, R. A. T. O., R. H. Hendriksz, and H. Kramers, 1959, Absorption of $CO_2$ in jet and falling films of electrolyte solutions with and without chemical reaction, Chem. Eng. Sci. 10, 88-104 https://doi.org/10.1016/0009-2509(59)80028-2
  15. Park, S. W., I. J. Sohn, D. W. Park, and K. J. Oh, 2003, Absorption of carbon dioxide into non-Newtonian liquid. I. Effect of Viscoelasticity, Sep. Sci. Technol. 38, 1361-1384 https://doi.org/10.1081/SS-120018814
  16. Park, S. W., T. Y. Kim, B. S. Choi, and J. W. Lee, 2004, Effect of rheological properties on chemical absorption of carbon dioxide with MEA, Korea-Australia Rheology J. 16, 35-45
  17. Park, S. W., B. S. Choi, and J. W. Lee, 2005, Effect of PEO viscoelasticity on carbon dioxide absorption in aqueous PEO solution of AMP, Korea-Australia Rheology J. 17, 199-205
  18. Park, S. W., B. S. Choi, and J. W. Lee, 2006, Effect of elasticity of aqueous colloidal silica solution on chemical absorption of carbon dioxide with 2-amino-2-methyl-1-propanol, Korea-Australia Rheology J. 18, 133-141
  19. Park, S. W., B. S. Choi, and J. W. Lee, 2007a, Effect of polyacrylamide on absorption rate of carbon dioxide in aqueous polyacrylamide solution containing monoethanolamine, J. Ind. Eng. Chem. 13, 7-13
  20. Park, S. W., B. S. Choi, K. W. Song, K. J. Oh, and J. W. Lee, 2007b, Absorption of carbon dioxide inyo aqueous xanthan gum solution containing monoethanolamine, Sep. Sci., Technol. 42, 3537-3554 https://doi.org/10.1080/01496390701710646
  21. Park, S. W., B. S. Choi, K. W. Song and J. W. Lee, 2008a, Effect of elasticity of aqueous xanthan gum with 2-amino-methyl-1-propanol on chemical absorption of carbon dioxide, Korea-Australia Rheology J. 20, 1-6
  22. Park, S. W. B. S. Choi and J. W. Lee, 2008b, Chemical Absorption of carbon dioxide into aqueous elastic xanthum gum solution containing NaOH, J. Ind. Eng. Chem. 14, 303-307 https://doi.org/10.1016/j.jiec.2008.01.002
  23. Pons, A., Dussap, C. G., and J. B. Gros, 1989, Modelling Xanthaomonas campertris batch fermentations in a Bubble Column, Biotechnol. Bioeng. 33, 394-405 https://doi.org/10.1002/bit.260330404
  24. Ranade, V. R. and J. J. Ulbrecht, 1978, Influence of polymer additives on the gas-liquid mass transfer in stirred tanks, AIChE J. 24, 796-803 https://doi.org/10.1002/aic.690240505
  25. Sandall, O. C. and K. G. Patel, 1970, Heat transfer to non-Newtonian pseudoplastic fluids in agitated vessels, Ind. Eng. Chem. Process Des. Dev. 9, 139-144 https://doi.org/10.1021/i260033a025
  26. Sandford, A. and J. Baird, 1983, The polysaccharides in Molecular Biotechnology, G. O. Aspinall, Ed., Vol. 2, Academic Press, New York, 401
  27. Song, K., H. Kuk, and G. Chang, 2006, Rheology of concentrated xanthan gum solutions: Steady shear flow behavior, Korea-Australia Rheol. 18, 67-81
  28. Suh, I. S., A. Schumpe, and W. Decker, 1992, Xanthan production in bubble column and air-lift reactors, Biotechnol. Bioeng. 39, 85-94 https://doi.org/10.1002/bit.260390113
  29. Terasaka, K. and H. Shibata, 2003, Oxygen transfer in viscous non-Newtonian liquids having yield stress in bubble column, Chem. Eng. Sci. 58, 5331-5337 https://doi.org/10.1016/j.ces.2003.09.011
  30. Totiwachwuthikul, P., A. Meisen and C. J. Lim, 1991, Solubility of $CO_2$ in 2-amino-2-methyl-1-propanol solutions, J. Chem. Eng. Data, 36, 130-133 https://doi.org/10.1021/je00001a038
  31. Vashitz, O., S. Ulitzur, and M. Sheituch, 1988, Mass transfer, batch and continous kinetics, on a luminous strain of Xanthomonas compestris, Chem. Eng, Sci. 43, 1883-1890 https://doi.org/10.1016/0009-2509(88)87057-X
  32. Vashitz, O., M. Sheituch, and S. Ulitzur, 1989, Mass transfer studies using closed-luminous strain of Xanthomonas compestris, Biotechnol. Bioeng. 34, 671-680 https://doi.org/10.1002/bit.260340511
  33. Versteeg, G. F. and W. P. M. van Swaaij, 1988, On the kinetics between $CO_2$ and alkanolamine both in aqueous and nonaqueous solutions-II. Tertiary amines, Chem. Eng. Sci. 43 573-587 https://doi.org/10.1016/0009-2509(88)87017-9
  34. Yagi, H. and F. Yoshida, 1975, Gas absorption by Newtonian and non-Newtonian fluids in sparged agitated vessel, Ind. Eng. Chem. Process Des. Dev. 14, 488-493 https://doi.org/10.1021/i260056a024
  35. Yu, W. C., G. Astarita, and D. W. Savage, 1985, Kinetics of carbon dioxide absorption in solutions of methyldiethanolamine, Chem. Eng. Sci. 40, 1585-1590 https://doi.org/10.1016/0009-2509(85)80101-9