Hydrogel microrheology near the liquid-solid transition

  • Larsen, Travis (Department of Chemical Engineering and Center for Molecular and Engineering Thermodynamics, University of Delaware) ;
  • Schultz, Kelly (Department of Chemical Engineering and Center for Molecular and Engineering Thermodynamics, University of Delaware) ;
  • Furst, Eric M. (Department of Chemical Engineering and Center for Molecular and Engineering Thermodynamics, University of Delaware)
  • Published : 2008.09.30

Abstract

Multiple particle tracking microrheology is used to characterize the viscoelastic properties of biomaterial and synthetic polymer gels near the liquid-solid transition. Probe particles are dispersed in the gel precursors, and their dynamics are measured as a function of the extent of reaction during gel formation. We interpret the dynamics using the generalized Stokes-Einstein relationship (GSER), using a form of the GSER that emphasizes the relationship between the probe particle mean-squared displacement and the material creep compliance. We show that long-standing concepts in gel bulk rheology are applicable to microrheological data, including time-cure superposition to identify the gel point and critical scaling exponents, and the power-law behavior of incipient network's viscoelastic response. These experiments provide valuable insight into the rheology, structure, and kinetics of gelling materials, and are especially powerful for studying the weak incipient networks of dilute gelators, as well as scarce materials, due to the small sample size requirements and rapid data acquisition.

Keywords

References

  1. Adolf, D. and J. E. Martin, 1990, Time cure superposition during cross-linking, Macromolecules 23, 3700-3704 https://doi.org/10.1021/ma00217a026
  2. Bobroff, N., 1986, Position measurement with a resolution and noise-limited instrument, Rev. Sci. Instrum. 57, 1152-1157 https://doi.org/10.1063/1.1138619
  3. Chin, K. and J. P. Vacanti, 2008, Hydrogel-perfluorocarbon composite scaffold promotes oxygen transport to immobilized cells, Biotech. Prog. 24, 358-366 https://doi.org/10.1021/bp070160f
  4. Crocker, J. C. and D. G. Grier, 1996, Methods of digital video microscopy for colloidal studies, J. Coll. Int. Sci. 179, 298-310 https://doi.org/10.1006/jcis.1996.0217
  5. Davis, M. E., J. P. M. Motion, D. A. Narmoneva, T. Takahashi, D. Hakuno, R. D. Kamm, S. G. Zhang and R. T. Lee, 2005, Injectable self-assembling peptide nanofibers create intramyocardial microenvironments for endothelial cells, Circulation 111, 442-450 https://doi.org/10.1161/01.CIR.0000153847.47301.80
  6. Davis, M. W. and J. P. Vacanti, 1996, Toward development of an implantable tissue engineered liver, Biomaterials 17, 365-372 https://doi.org/10.1016/0142-9612(96)85575-X
  7. Derrida, B., D. Stauffer, H. J. Herrmann and J. Vannimenus, 1983, Transfer-matrix calculation of conductivity in 3-dimensional random resistor networks at percolation-threshold, J. Phys. Lett. (France) 44, L701-L706 https://doi.org/10.1051/jphyslet:019830044017070100
  8. Ellis-Behnke, R. G., Y. X. Liang, S. W. You, D. K. C. Tay, S. G. Zhang, K. F. So and G. E. Schneider, 2006, Nano neuro knitting: peptide nanofiber scaffold for brain repair and axon regeneration with functional return of vision, Proc. Natl. Acad. Sci. USA 103, 5054-5059
  9. Ferry, J., 1980, Viscoelastic properties of polymers, Wiley, New York
  10. Gardel, M. L., M. T. Valentine, J. C. Crocker, A. R. Bausch and D. A. Weitz, 2003, Microrheology of entangled F-actin solutions, Phys. Rev. Lett. 91, 158302 https://doi.org/10.1103/PhysRevLett.91.158302
  11. Grinstaff, M. W., 2007, Designing hydrogel adhesives for corneal wound repair, Biomaterials 28, 5205-5214 https://doi.org/10.1016/j.biomaterials.2007.08.041
  12. Haines-Butterick, L., K. Rajagopal, M. Branco, D. Salick, R. Rughani, M. Pilarz, M. S. Lamm, D. J. Pochan and J. P. Schneider, 2007, Controlling hydrogelation kinetics by peptide design for three-dimensional encapsulation and injectable delivery of cells, Proc. Natl. Acad. Sci. 104, 7791-7796
  13. Hoffman, A. S., 2002, Hydrogels for biomedical applications, Adv. Drug Delivery Rev. 43, 3-12
  14. Joanny, J. F., 1982, Flow birefringence at the sol-gel transition, J. Phys. (France) 43, 467-473 https://doi.org/10.1051/jphys:01982004303046700
  15. Langer, R. and N. A. Peppas, 2003, Advances in biomaterials, drug delivery, and bionanotechnology, AIChE J. 49, 2990-3006 https://doi.org/10.1002/aic.690491202
  16. Larsen, T. H. and E. M. Furst, 2008, Microrheology of the liquidsolid transition during gelation, Phys. Rev. Lett. 100, 146001 https://doi.org/10.1103/PhysRevLett.100.146001
  17. Lee, K. and D. J. Mooney, 2001, Hydrogels for tissue engineering, Chem. Rev. 101, 1869-1879 https://doi.org/10.1021/cr000108x
  18. Lutolf, M. P. and J. A. Hubbell, 2005, Synthetic biomaterials as instructive extracellular microenvironments for morphogenesis in tissue engineering, Nat. Biotechnol. 23, 47-55 https://doi.org/10.1038/nbt1055
  19. Martin, J. E., D. Adolf and J. P. Wilcoxon, 1988, Viscoelasticity of near-critical gels, Phys. Rev. Lett. 61, 2620-2623 https://doi.org/10.1103/PhysRevLett.61.2620
  20. Martin, J. E., D. Adolf and J. P. Wilcoxon, 1989, Viscoelasticity near the sol-gel transition, Phys. Rev. A 39, 1325-1332 https://doi.org/10.1103/PhysRevA.39.1325
  21. Mason, T. G., 2000, Estimating the viscoelastic moduli of complex fluids using the generalized Stokes-Einstein equation, Rheol. Acta 39, 371-378 https://doi.org/10.1007/s003970000094
  22. Mikos, A. G., S. W. Herring, P. Ochareon, J. Elisseeff, H. H. Lu, R. Kandel, F. J. Schoen, M. Toner, D. Mooney, A. Atala, M. E. Van Dyke, D. Kaplan and G. Vunjak-Novakovic, 2006, Engineering complex tissues, Tissue Engineering 12, 3307-3339 https://doi.org/10.1089/ten.2006.12.3307
  23. Nie, T., A. Baldwin, N. Yamaguchi and K. L. Kiick, 2007, Production of heparin-functionalized hydrogels for the development of responsive and controlled growth factor delivery systems, J. Controlled Release 122, 287-296 https://doi.org/10.1016/j.jconrel.2007.04.019
  24. Ozbas, B., J. Kretsinger, K. Rajagopal, J. P. Schneider and D. J. Pochan, 2004, Salt-triggered peptide folding and consequent self-assembly into hydrogels with tunable modulus, Macromolecules 37, 7331-7337 https://doi.org/10.1021/ma0491762
  25. Palmer, A., J. Y. Xu and D. Wirtz, 1998, High-frequency viscoelasticity of crosslinked actin filament networks measured by diffusing wave spectroscopy, Rheol. Acta 37, 97-106 https://doi.org/10.1007/s003970050095
  26. Peppas, N. A., P. Bures, W. Leobandung and H. Ichikawa, 2000, Hydrogels in pharmaceutical formulations, Eur. J. Pharmacol. Biopharm. 50, 27-46
  27. Pochan, D., J. P. Schneider, J. Kretsinger, B. Ozbas, K. Rajagopal and L. Haines, 2003, Thermally reversible hydrogels via intramolecular folding and consequent self-assembly of a de Novo designed peptide, J. Am. Chem. Soc. 125, 11802-11803 https://doi.org/10.1021/ja0353154
  28. Rajagopal, K. and J. P. Schneider, 2004, Self-assembling peptides and proteins for nanotechnological applications, Curr. Opin. Struct. Biol. 14, 480-486 https://doi.org/10.1016/j.sbi.2004.06.006
  29. Savin, T. and P. S. Doyle, 2005, Static and dynamic errors in particle tracking microrheology, Biophys. J. 88, 623-638 https://doi.org/10.1529/biophysj.104.042457
  30. Savin, T. and P. S. Doyle, 2007, Electrostatically tuned rate of peptide self-assembly resolved by multiple particle tracking, Soft Matter 3, 1194-1202 https://doi.org/10.1039/b700434f
  31. Scanlan, J. C. and H. H. Winter, 1991, Composition dependence of the viscoelasticity of end-linked poly(dimethylsiloxane) at the gel point, Macromolecules 24, 47-54 https://doi.org/10.1021/ma00001a008
  32. Schneider, J. P., D. J. Pochan, B. Ozbas, K. Rajagopal, L. Pakstis and J. Kretsinger, 2002, Responsive hydrogels from the intramolecular folding and self-assembly of a designed peptide, J. Am. Chem. Soc. 124, 15030-15037 https://doi.org/10.1021/ja027993g
  33. Stauffer, D., A. Coniglio and M. Adam, 1982, Gelation and critical phenomena, Adv. Polym. Sci. 44, 103-158 https://doi.org/10.1007/3-540-11471-8_4
  34. Stevens, M. M. and J. H. George, 2005, Exploring and engineering the cell surface interface, Science 310, 1135-1138 https://doi.org/10.1126/science.1106587
  35. Tseng, Y., K. M. An and D. Wirtz, 2002, Microheterogeneity controls the rate of gelation of actin filament networks, J. Biol. Chem. 277, 18143-18150 https://doi.org/10.1074/jbc.M110868200
  36. Veerman, C., K. Rajagopal, C. S. Palla, D. J. Pochan, J. P. Schneider and E. M. Furst, 2006, Gelation kinetics of beta-hairpin peptide hydrogel networks, Macromolecules 39, 6608-6614 https://doi.org/10.1021/ma0609331
  37. Winter, H. H. and F. Chambon, 1986, Analysis of linear viscoelasticity of a cross-linking polymer at the gel point, J. Rheol. 30, 367-382 https://doi.org/10.1122/1.549853
  38. Winter, H. H. and F. Chambon, 1987, Linear viscoelasticity at the gel point of a cross-linking PDMS with imbalanced stoichiometry, J. Rheol. 31, 683-697 https://doi.org/10.1122/1.549955
  39. Winter, H. H. and M. Mours, 1997, Rheology of polymers near liquid-solid transitions, Adv. Polym. Sci. 134, 165-234 https://doi.org/10.1007/3-540-68449-2_3
  40. Wu, D. Q., Y. X. Sun, X. D. Xu, S. X. Cheng, X. Z. Zhang and R. X. Zhuo, 2008, Biodegradable and pH-sensitive hydrogels for cell encapsulation and controlled drug release, Biomacro. 9, 1155-1162 https://doi.org/10.1021/bm7010328
  41. Xu, C. Y., V. Breedveld and J. Kopecek, 2005, Reversible hydrogels from self-assembling genetically engineered protein block copolymers, Biomacro. 6, 1739-1749 https://doi.org/10.1021/bm050017f
  42. Zimenkov, Y., S. N. Dublin, R. Ni, R. S. Tu, V. Breedveld, R. P. Apkarian and V. P. Conticello, 2006, Rational design of a reversible pH-responsive switch for peptide self-assembly, J. Am. Chem. Soc. 128, 6770-6771 https://doi.org/10.1021/ja0605974