Browse > Article

Hydrogel microrheology near the liquid-solid transition  

Larsen, Travis (Department of Chemical Engineering and Center for Molecular and Engineering Thermodynamics, University of Delaware)
Schultz, Kelly (Department of Chemical Engineering and Center for Molecular and Engineering Thermodynamics, University of Delaware)
Furst, Eric M. (Department of Chemical Engineering and Center for Molecular and Engineering Thermodynamics, University of Delaware)
Publication Information
Korea-Australia Rheology Journal / v.20, no.3, 2008 , pp. 165-173 More about this Journal
Abstract
Multiple particle tracking microrheology is used to characterize the viscoelastic properties of biomaterial and synthetic polymer gels near the liquid-solid transition. Probe particles are dispersed in the gel precursors, and their dynamics are measured as a function of the extent of reaction during gel formation. We interpret the dynamics using the generalized Stokes-Einstein relationship (GSER), using a form of the GSER that emphasizes the relationship between the probe particle mean-squared displacement and the material creep compliance. We show that long-standing concepts in gel bulk rheology are applicable to microrheological data, including time-cure superposition to identify the gel point and critical scaling exponents, and the power-law behavior of incipient network's viscoelastic response. These experiments provide valuable insight into the rheology, structure, and kinetics of gelling materials, and are especially powerful for studying the weak incipient networks of dilute gelators, as well as scarce materials, due to the small sample size requirements and rapid data acquisition.
Keywords
hydrogel; peptide; microrheology; particle tracking; superposition; critical gel;
Citations & Related Records

Times Cited By Web Of Science : 6  (Related Records In Web of Science)
Times Cited By SCOPUS : 5
연도 인용수 순위
1 Chin, K. and J. P. Vacanti, 2008, Hydrogel-perfluorocarbon composite scaffold promotes oxygen transport to immobilized cells, Biotech. Prog. 24, 358-366   DOI   ScienceOn
2 Crocker, J. C. and D. G. Grier, 1996, Methods of digital video microscopy for colloidal studies, J. Coll. Int. Sci. 179, 298-310   DOI   ScienceOn
3 Ellis-Behnke, R. G., Y. X. Liang, S. W. You, D. K. C. Tay, S. G. Zhang, K. F. So and G. E. Schneider, 2006, Nano neuro knitting: peptide nanofiber scaffold for brain repair and axon regeneration with functional return of vision, Proc. Natl. Acad. Sci. USA 103, 5054-5059
4 Haines-Butterick, L., K. Rajagopal, M. Branco, D. Salick, R. Rughani, M. Pilarz, M. S. Lamm, D. J. Pochan and J. P. Schneider, 2007, Controlling hydrogelation kinetics by peptide design for three-dimensional encapsulation and injectable delivery of cells, Proc. Natl. Acad. Sci. 104, 7791-7796
5 Joanny, J. F., 1982, Flow birefringence at the sol-gel transition, J. Phys. (France) 43, 467-473   DOI
6 Langer, R. and N. A. Peppas, 2003, Advances in biomaterials, drug delivery, and bionanotechnology, AIChE J. 49, 2990-3006   DOI   ScienceOn
7 Martin, J. E., D. Adolf and J. P. Wilcoxon, 1989, Viscoelasticity near the sol-gel transition, Phys. Rev. A 39, 1325-1332   DOI
8 Peppas, N. A., P. Bures, W. Leobandung and H. Ichikawa, 2000, Hydrogels in pharmaceutical formulations, Eur. J. Pharmacol. Biopharm. 50, 27-46
9 Pochan, D., J. P. Schneider, J. Kretsinger, B. Ozbas, K. Rajagopal and L. Haines, 2003, Thermally reversible hydrogels via intramolecular folding and consequent self-assembly of a de Novo designed peptide, J. Am. Chem. Soc. 125, 11802-11803   DOI   ScienceOn
10 Savin, T. and P. S. Doyle, 2007, Electrostatically tuned rate of peptide self-assembly resolved by multiple particle tracking, Soft Matter 3, 1194-1202   DOI   ScienceOn
11 Scanlan, J. C. and H. H. Winter, 1991, Composition dependence of the viscoelasticity of end-linked poly(dimethylsiloxane) at the gel point, Macromolecules 24, 47-54   DOI
12 Schneider, J. P., D. J. Pochan, B. Ozbas, K. Rajagopal, L. Pakstis and J. Kretsinger, 2002, Responsive hydrogels from the intramolecular folding and self-assembly of a designed peptide, J. Am. Chem. Soc. 124, 15030-15037   DOI   ScienceOn
13 Stauffer, D., A. Coniglio and M. Adam, 1982, Gelation and critical phenomena, Adv. Polym. Sci. 44, 103-158   DOI
14 Veerman, C., K. Rajagopal, C. S. Palla, D. J. Pochan, J. P. Schneider and E. M. Furst, 2006, Gelation kinetics of beta-hairpin peptide hydrogel networks, Macromolecules 39, 6608-6614   DOI   ScienceOn
15 Winter, H. H. and F. Chambon, 1987, Linear viscoelasticity at the gel point of a cross-linking PDMS with imbalanced stoichiometry, J. Rheol. 31, 683-697   DOI
16 Winter, H. H. and M. Mours, 1997, Rheology of polymers near liquid-solid transitions, Adv. Polym. Sci. 134, 165-234   DOI
17 Nie, T., A. Baldwin, N. Yamaguchi and K. L. Kiick, 2007, Production of heparin-functionalized hydrogels for the development of responsive and controlled growth factor delivery systems, J. Controlled Release 122, 287-296   DOI   ScienceOn
18 Davis, M. E., J. P. M. Motion, D. A. Narmoneva, T. Takahashi, D. Hakuno, R. D. Kamm, S. G. Zhang and R. T. Lee, 2005, Injectable self-assembling peptide nanofibers create intramyocardial microenvironments for endothelial cells, Circulation 111, 442-450   DOI   ScienceOn
19 Savin, T. and P. S. Doyle, 2005, Static and dynamic errors in particle tracking microrheology, Biophys. J. 88, 623-638   DOI   ScienceOn
20 Derrida, B., D. Stauffer, H. J. Herrmann and J. Vannimenus, 1983, Transfer-matrix calculation of conductivity in 3-dimensional random resistor networks at percolation-threshold, J. Phys. Lett. (France) 44, L701-L706   DOI
21 Palmer, A., J. Y. Xu and D. Wirtz, 1998, High-frequency viscoelasticity of crosslinked actin filament networks measured by diffusing wave spectroscopy, Rheol. Acta 37, 97-106   DOI
22 Adolf, D. and J. E. Martin, 1990, Time cure superposition during cross-linking, Macromolecules 23, 3700-3704   DOI
23 Larsen, T. H. and E. M. Furst, 2008, Microrheology of the liquidsolid transition during gelation, Phys. Rev. Lett. 100, 146001   DOI   ScienceOn
24 Zimenkov, Y., S. N. Dublin, R. Ni, R. S. Tu, V. Breedveld, R. P. Apkarian and V. P. Conticello, 2006, Rational design of a reversible pH-responsive switch for peptide self-assembly, J. Am. Chem. Soc. 128, 6770-6771   DOI   ScienceOn
25 Lee, K. and D. J. Mooney, 2001, Hydrogels for tissue engineering, Chem. Rev. 101, 1869-1879   DOI   ScienceOn
26 Bobroff, N., 1986, Position measurement with a resolution and noise-limited instrument, Rev. Sci. Instrum. 57, 1152-1157   DOI
27 Martin, J. E., D. Adolf and J. P. Wilcoxon, 1988, Viscoelasticity of near-critical gels, Phys. Rev. Lett. 61, 2620-2623   DOI   ScienceOn
28 Davis, M. W. and J. P. Vacanti, 1996, Toward development of an implantable tissue engineered liver, Biomaterials 17, 365-372   DOI   ScienceOn
29 Hoffman, A. S., 2002, Hydrogels for biomedical applications, Adv. Drug Delivery Rev. 43, 3-12
30 Winter, H. H. and F. Chambon, 1986, Analysis of linear viscoelasticity of a cross-linking polymer at the gel point, J. Rheol. 30, 367-382   DOI   ScienceOn
31 Grinstaff, M. W., 2007, Designing hydrogel adhesives for corneal wound repair, Biomaterials 28, 5205-5214   DOI   ScienceOn
32 Mason, T. G., 2000, Estimating the viscoelastic moduli of complex fluids using the generalized Stokes-Einstein equation, Rheol. Acta 39, 371-378   DOI
33 Stevens, M. M. and J. H. George, 2005, Exploring and engineering the cell surface interface, Science 310, 1135-1138   DOI   ScienceOn
34 Wu, D. Q., Y. X. Sun, X. D. Xu, S. X. Cheng, X. Z. Zhang and R. X. Zhuo, 2008, Biodegradable and pH-sensitive hydrogels for cell encapsulation and controlled drug release, Biomacro. 9, 1155-1162   DOI   ScienceOn
35 Rajagopal, K. and J. P. Schneider, 2004, Self-assembling peptides and proteins for nanotechnological applications, Curr. Opin. Struct. Biol. 14, 480-486   DOI   ScienceOn
36 Ferry, J., 1980, Viscoelastic properties of polymers, Wiley, New York
37 Xu, C. Y., V. Breedveld and J. Kopecek, 2005, Reversible hydrogels from self-assembling genetically engineered protein block copolymers, Biomacro. 6, 1739-1749   DOI   ScienceOn
38 Tseng, Y., K. M. An and D. Wirtz, 2002, Microheterogeneity controls the rate of gelation of actin filament networks, J. Biol. Chem. 277, 18143-18150   DOI   ScienceOn
39 Lutolf, M. P. and J. A. Hubbell, 2005, Synthetic biomaterials as instructive extracellular microenvironments for morphogenesis in tissue engineering, Nat. Biotechnol. 23, 47-55   DOI   ScienceOn
40 Ozbas, B., J. Kretsinger, K. Rajagopal, J. P. Schneider and D. J. Pochan, 2004, Salt-triggered peptide folding and consequent self-assembly into hydrogels with tunable modulus, Macromolecules 37, 7331-7337   DOI   ScienceOn
41 Mikos, A. G., S. W. Herring, P. Ochareon, J. Elisseeff, H. H. Lu, R. Kandel, F. J. Schoen, M. Toner, D. Mooney, A. Atala, M. E. Van Dyke, D. Kaplan and G. Vunjak-Novakovic, 2006, Engineering complex tissues, Tissue Engineering 12, 3307-3339   DOI   ScienceOn
42 Gardel, M. L., M. T. Valentine, J. C. Crocker, A. R. Bausch and D. A. Weitz, 2003, Microrheology of entangled F-actin solutions, Phys. Rev. Lett. 91, 158302   DOI   ScienceOn