• Title/Summary/Keyword: Vibration isolation table

Search Result 57, Processing Time 0.022 seconds

PZT stack actuator-based hybrid mount system for mitigating micro-vibration of vibration isolation table (제진 테이블의 미진동 저감을 위한 PZT stack 가력기 기반 복합형 마운트 시스템)

  • Moon, Yeong-Jong;Jang, Dong-Doo;Moon, Seok-Jun;Choi, Sang-Min;Jung, Hyung-Jo
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • 2009.10a
    • /
    • pp.292-298
    • /
    • 2009
  • This paper investigates the control performance of the proposed hybrid mount system for vibration isolation table. The hybrid mount system consists of an air spring as a passive device and a PZT stack actuator as an active device in series. The feasibility of the PZT stack actuator as an active actuator was examined through the simple experiments. After that, a series of numerical simulations were carried out to evaluate the control performance of the proposed hybrid mount system. The equations of motion of the table with a set of hybrid mount systems consisting of four devices are derived. The air spring is considered as a 1 spring and 1 dashpot elements, and PID control algorithm is adopted to estimate the control force. The results of the numerical simulations presents that the proposed hybrid mount system could be the promising control system for vibration isolation table.

  • PDF

Design optimization of vibration isolation system through minimization of vibration power flow

  • Xie, Shilin;Or, Siu Wing;Chan, Helen Lai Wa;Choy, Ping Kong;Liu, Peter Chou Kee
    • Structural Engineering and Mechanics
    • /
    • v.28 no.6
    • /
    • pp.677-694
    • /
    • 2008
  • A vibration power minimization model is developed, based on the mobility matrix method, for a vibration isolation system consisting of a vibrating source placed on an elastic support structure through multiple resilient mounts. This model is applied to investigate the design optimization of an X-Y motion stage-based vibration isolation system used in semiconductor wire-bonding equipment. By varying the stiffness coefficients of the resilient mounts while constraining the dynamic displacement amplitudes of the X-Y motion stage, the total power flow from the X-Y motion stage (the vibrating source) to the equipment table (the elastic support structure) is minimized at each frequency interval in the concerned frequency range for different stiffnesses of the equipment table. The results show that when the equipment table is relatively flexible, the optimal design based on the proposed vibration power inimization model gives significantly little power flow than that obtained using a conventional vibration force minimization model at some critical frequencies. When the equipment table is rigid enough, both models provide almost the same predictions on the total power flow.

공기스프링을 이용한 방진 테이블의 능동 제어

  • Im, Gyeong-Hwa;Jin, Gyeong-Bok;An, Chae-Heon;Park, Jeong-Geun
    • Proceedings of the Korean Society Of Semiconductor Equipment Technology
    • /
    • 2006.10a
    • /
    • pp.184-189
    • /
    • 2006
  • In the process of accurate manufacture and measurement, it is necessarily required to isolate external or internal vibration due to external disturbance and internal actuators. The higher vibration isolation system gets damping around resonance, the better it is generally. This paper analyzes the performance of an existing passive air-spring for vibration isolation table by rising experiment and simulation. Optimal design for a passive air spring can be obtained by fluting the size of the orifice. Also design for an active isolation system is carried out by applying PID controller and considering non-linearity of pneumatic characteristics with help of look-up table. We have developed the act ive vibration isolation table wi th the bet ter isolation performance.

  • PDF

A study on response analysis of 6-DOF pneumatic vibration isolation table loaded by transient movements of carriage on it (상판 위 질량의 순간적인 움직임에 의해 가진되는 6-자유도 공압제진대의 진동 응답에 대한 연구)

  • Sun, Jong-Oh;Shin, Yun-Ho;Kim, Kwang-Joon
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • 2007.05a
    • /
    • pp.97-102
    • /
    • 2007
  • As environmental vibration requirements on precision equipments get more stringent, use of pneumatic vibration isolators becomes more crucial and, hence, their dynamic performance needs to be further improved. Dynamic behavior of those pneumatic vibration isolation tables is very important to both manufacturer and customer as performance specifications. Together with conventional transmissibility, transient response characteristics are another critical performance index especially when movements of components, e.g., x-y tables, of the precision equipments are very dynamic. In this paper, analysis on transient response of a pneumatic vibration isolation table loaded by a mass moving on it is presented. This is a conventional dynamics problem on a rigid body with 6 degree of freedom and a mass with another degree of freedom. How to obtain transient responses of the isolation table is described when the movements of the mass are prescribed relative to the table.

  • PDF

A Study on Response Analysis of 6-DOF Pneumatic Vibration Isolation Table Loaded by Transient Movements of Carriage on It (상판 위 질량의 순간적인 움직임에 의해 가진되는 6-자유도 공압제진대의 진동 응답에 대한 연구)

  • Sun, Jong-Oh;Shin, Yun-Ho;Kim, Kwang-Joon
    • Transactions of the Korean Society for Noise and Vibration Engineering
    • /
    • v.17 no.6 s.123
    • /
    • pp.515-523
    • /
    • 2007
  • As environmental vibration requirements on precision equipments get more stringent, use of pneumatic vibration isolators becomes more crucial and, hence, their dynamic performance needs to be further improved. Dynamic behavior of those pneumatic vibration Isolation tables is very important to both manufacturer and customer as performance specifications. Together with conventional transmissibility, transient response characteristics are another critical performance index especially when movements of components, e.g., x-y tables, of the precision equipments are very dynamic. In this paper, analysis on transient response of a pneumatic vibration isolation table loaded by a mass moving on it is presented. This is a conventional dynamics problem on a rigid body with 6 degree of freedom and a mass with another degree of freedom. How to obtain transient responses of the isolation table is described when the movements of the mass are prescribed relative to the table.

Evaluation method of isolation performance for MIMO isolation table using singular value of transmissibility matrix (전달율 행렬의 특이치를 이용한 다입력/다출력 제진대계의 절연성능 평가법)

  • Sun, Jong-Oh;Kim, Kwang-Joon
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • 2012.04a
    • /
    • pp.324-329
    • /
    • 2012
  • Isolation tables are widely used for precision equipments and their isolation performances have been usually expressed and evaluated by transsmissibility. However, transmissibility is a concept for 1-degree of freedom(DOF) system. In practice, isolation tables are supproted by more than 4 springs. Each spring is subjected to vertical and horizontal ground vibrations, and also the table has more than 1-DOF. Therefore, isolation tables should be treated as multi-input/multi-output(MIMO) system of which isolation performance is expressed by transmissibility matrix. However, the matrix is too complicated to be an index for a system. In this paper, maximum singular value of transmissibility matrx is suggested as a simple performance index of a MIMO isolation system. Physical meaning of singular value is explained using a simple a 2-DOF isolation table. Furthermore, maximum singular values of passive, 3-DOF active and 6-DOF active isolation tables are obtained through experiments, and their meaning are explained and compared with each other.

  • PDF

Optimal Design of Air-spring and Active Control of Vibration Isolation Table (공기스프링의 최적설계 및 방진 테이블의 능동 제어)

  • An, Chae-Hun;Kim, Ho-Sung;Yim, Kwang-Hyeok;Jin, Kyong-Bok;Rim, Kyung-Hwa
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • 2006.11a
    • /
    • pp.909-914
    • /
    • 2006
  • Vibration isolation tables are mostly required in precise measurement and manufacturing system. Among the vibration isolation tables, an air spring is the most favorable equipment because of low resonant frequency and high damping ratio. However, it is difficult to design the air spring with the required stiffness and damping ratio. Futhermore, whenever conventional active control methods are applied to the air spring, it may be difficult to obtain effective control performance due to high nonlinearity of air spring. In this paper, the optimal design of the air spring is performed using genetic algorithm to bring out low resonant frequency and high damping ratio. Also, active control of the vibration isolation table with 3-DOF model is proposed using the adaptive control method. Through experiments, optimal design is shown to be effective. And performance of the proposed control method is verified to be better than those of the passive control method and the conventional active control methods.

  • PDF

Design and Constrvction of a Granite Optical Table with a Vibration Isolator (진동 방지기를 갖는 화강암 광탁자의 설계 및 제작)

  • Song, Jae--Won;Yu, Sang-Dae
    • Proceedings of the KIEE Conference
    • /
    • 1987.07a
    • /
    • pp.98-100
    • /
    • 1987
  • A granite optical table with a vibration isolator system is designed and constrvcted. The table top is made with granite and the vibration isolation system is constrvcted using a pneumatic isolator. The performance of the table is evalvated by the vibration measurement.

  • PDF

Vibration control of the vibration isolation system using the electromagnetic actuator (전자석 액츄에이터에 의한 수동방진 테이블의 제어)

  • Choi, Hyun;Lee, Jung-Youn
    • Proceedings of the Korean Society of Machine Tool Engineers Conference
    • /
    • 2003.10a
    • /
    • pp.227-232
    • /
    • 2003
  • As the most precision equipment requiring very strict vibration environment are vulnerable to the surrounding vibration condition, they adapt the passive or active vibration isolation system. When it comes to the passive isolation system, the resonance of the isolation system causes excessive resonance response, and finally results in the degrade the equipment performance. This paper deals with the active control method to control this resonance induced response, and includes the experiment on the active control for controlling the resonance response on the table against the excitation of the same frequency with the natural frequency of the isolation system. The electromagnetic actuator was designed and the control effect was verified by the experiment. The experiment showed that the electromagnetic actuator is effective for controlling the low frequency isolation resonance response of the precision equipment.

  • PDF