하이브리드형 제진대 구성에 따른 성능 특성 고찰

Study on Isolation Performance Characteristics due to Structure of Hybrid Type Isolation Table

신윤호 † • 문석준*

Y. H. Shin and S. J. Moon

1. 서 론

정밀 장비 기술의 진보와 함께 장비의 최대 성능발현을 위한 작동 환경에 대한 요구조건이 강화되고 있다. 정밀 장비의 환경 진동 요구조건을 만족하기 위해 수동형 공압제진대가 빈번하게 사용되고 있는데, 이 때 발생하는 제진대 고유진동수 부근의 진동 증폭 대한 해결책으로 능동형 제진대에 대한 연구가 활발하게 진행되고 있다. 본 연구에서는 능동 제어를 위한 피에조 구동부와 고주파 영역에서의 공기 스프링의 이점을 활용하기 위한 하이브리드형 제진대의 구성에 따른 장단점에 대해 검토해 보고자 한다.

2. 하이브리드형 제진대의 모형화

2.1 하이브리드형 제진대의 수학적 모형

본 연구에서 사용한 공압제진대는 강성 및 감쇠의세부 매개변수가 알려진 상용 공기스프링을 이용하였으며, 이에 적절한 유료하중을 적용하였다. 공기스프링 및 유료하중에 대한 세부적인 정보는 Table 1에 나타내었으며, 본 모사실험에서 사용된 피에조스택 형식의 구동부에 대한 세부적인 매개변수를함께 나타내었다.

본 연구에서 검토한 1-자유도 하이브리형 제진대의 구성은 Figure 1과 같으며, 각각에 대한 운동방정식을 유도하여 상태방정식의 형태로 정리하면, 식(1)~(2)와 같다. 피에조 스택 형식(Piezo-stack Type)의 구동부에 대한 수학적 모형화는 그림에서 관찰 가능하듯이 두 부분으로 나뉜 점 질량과 강성,

그리고 병렬 형태로 입력힘을 발생하는 요소로 모형화한다. Figure 1(a) 형태의 경우, 지반으로부터 들어오는 지진 등의 충격력으로부터 제어 역할을하는 피에조 구동부를 보호할 수 있는 구조이며, Figure 1(b)의 경우, (a)와 비교하여 제어를 위해 필요로 하는 입력 힘의 크기가 작은 이점이 있다.

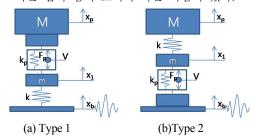


Figure 1 Structure of Hybrid Type Isolation Table

$$\begin{vmatrix} \dot{x}_{p} \\ \dot{x}_{1} \\ \ddot{x}_{p} \\ \ddot{x}_{1} \end{vmatrix} = \begin{bmatrix} 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & 1 \\ -k_{p}/M & k_{p}/M & 0 & 0 \\ k_{p}/m & -(k_{p}+k)/m & 0 & -c/m \end{bmatrix} \begin{vmatrix} x_{p} \\ x_{1} \\ \dot{x}_{p} \\ \dot{x}_{1} \end{vmatrix} + \begin{bmatrix} 0 & 0 \\ 0 & 0 \\ 1/M & 0 \\ -1/m & 1/m \end{bmatrix} \begin{Bmatrix} F_{p} \\ kx_{b} + c\dot{x}_{b} \end{Bmatrix}$$

$$(1)$$

$$\begin{vmatrix} \dot{x}_{p} \\ \dot{x}_{1} \\ \vdots \\ \ddot{x}_{p} \end{vmatrix} = \begin{bmatrix} 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & 1 \\ -k /M & k /M & -c/M & c/M \\ k /m & -(k_{p} + k)/m & c/m & -c/m \end{bmatrix} \begin{bmatrix} x_{p} \\ x_{1} \\ \dot{x}_{p} \\ \vdots \\ x_{p} \end{bmatrix} + \begin{bmatrix} 0 & 0 \\ 0 & 0 \\ 0 & 0 \\ 1/m & k_{p} /m \end{bmatrix} \begin{bmatrix} F_{p} \\ x_{b} \end{bmatrix}$$

$$(2)$$

Table 1 Parameters of Hybrid Isolation Table

Parameter	Value	Parameter	Value
M	30 kg	m	2 kg
k	$1.1 \times 10^4 \text{ N/m}$	k_p	$1.0 \times 10^{8} \text{ N/m}$
С	20 Ns/m		

2.2 하이브리드형 제진대 적용 제어 이론

하이브리드형 제진대에 대해 적용 검토한 제어 이론은 크게 피드백과 피드포워드 제어 이론으로 나뉜다. 피드백의 경우 일반적으로 많이 사용되는 선형 PD 제어기를 이용하였으며, 피드포워드의 경 우는 적응 필터 이론 중 하나인 Flitered-X LMS 알고리즘을 이용하였다. 이에 대한 세부적인 적용

[†] 교신저자; 정회원, 한국기계연구원

E-mail: <u>shinyh77@kimm.re.kr</u> Tel: 042-868-7211, Fax: 042-868-

^{*} 정회원, 한국기계연구원

블록 다이어그램은 Figure 2와 같다.

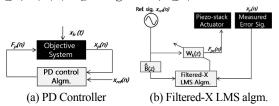


Figure 2 Block Diagram of Applied Control Algorithm

하이브리드형 제진대의 지반 가진에 대한 응답 특성 고찰

3.1 랜덤 지반 진동에 대한 피드백 제어 이론 적용 결과

피드백 제어 이론을 적용한 결과는 Figure 3과 같으며, 사용된 제어 이득은 안정한 구간내에서의 최대값을 시행 착오(Trial & Error)를 거쳐 결정하였다. 동일한 수준의 제어 입력에 대한 전달률의 크기를 Figure 4와 5를 통해서 관찰할 수 있는데, 힘의 수준이 동일해도 전달률 개선률은 Type 2가 더뛰어남을 확인할 수 있다.

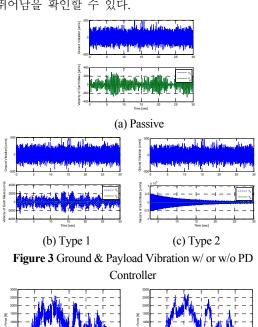
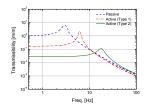



Figure 4 Control Force of Each Configuration

(b) Type 2

(a) Type 1

Figure 5 Transmissibility btw. x_p and x_b **Table 2** Vibration Level

	[um/s] _{rms}		[um/s] _{rms}
X _b	111.3	x _p , Type 1	23.0
x _p , Passive	134.5	x _p , Type 2	6.0

3.2 정현파 지반 진동에 대한 적응 필터 제어 이론(Filtered-X LMS algm.) 적용 결과

적응 필터 제어 이론을 적용한 결과는 Figure 6과 같으며, 제어 시 필요 입력 힘은 Figure 7과 같다. 적응제어필터의 차수는 20차의 FIR 필터를 이용하였다. Type 2와 비교하여 Type 1의 성능이 저하되기는 하지만 충분히 적용 가능함을 확인하였다.

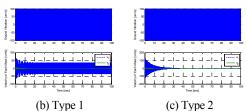


Figure 6 Ground & Payload Vibration with Feedforward Controller(Filtered-X LMS Algm.)

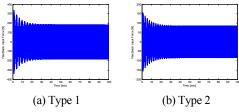


Figure 7 Control Force of Each Configuration

3. 결 론

본 연구에서는 하이브리드형 제진대의 구성에 따른 지반 진동 절연 성능을 비교, 검토하였다. 두 형식의 장단점을 언급하였으며, 모사실험을 통해 그성능을 검토하였다.

후 기

본 연구는 지식경제부 산업원천기술개발 사업(과제번호: 10033735)의 일환으로 수행되었습니다.