• Title/Summary/Keyword: Vibration body

Search Result 1,153, Processing Time 0.027 seconds

Study on the Failure Diagnosis of Robot Joints Using Machine Learning (기계학습을 이용한 로봇 관절부 고장진단에 대한 연구)

  • Mi Jin Kim;Kyo Mun Ku;Jae Hong Shim;Hyo Young Kim;Kihyun Kim
    • Journal of the Semiconductor & Display Technology
    • /
    • v.22 no.4
    • /
    • pp.113-118
    • /
    • 2023
  • Maintenance of semiconductor equipment processes is crucial for the continuous growth of the semiconductor market. The process must always be upheld in optimal condition to ensure a smooth supply of numerous parts. Additionally, it is imperative to monitor the status of the robots that play a central role in the process. Just as many senses of organs judge a person's body condition, robots also have numerous sensors that play a role, and like human joints, they can detect the condition first in the joints, which are the driving parts of the robot. Therefore, a normal state test bed and an abnormal state test bed using an aging reducer were constructed by simulating the joint, which is the driving part of the robot. Various sensors such as vibration, torque, encoder, and temperature were attached to accurately diagnose the robot's failure, and the test bed was built with an integrated system to collect and control data simultaneously in real-time. After configuring the user screen and building a database based on the collected data, the characteristic values of normal and abnormal data were analyzed, and machine learning was performed using the KNN (K-Nearest Neighbors) machine learning algorithm. This approach yielded an impressive 94% accuracy in failure diagnosis, underscoring the reliability of both the test bed and the data it produced.

  • PDF

Development of Improved String Model for Instruments with Anjok (안족이 있는 악기의 개선된 현의 모델 개발)

  • Cho, Sang-Jin;Chong, Ui-Pil
    • The Journal of the Acoustical Society of Korea
    • /
    • v.26 no.7
    • /
    • pp.328-333
    • /
    • 2007
  • In this paper, we describe characteristics of a movable bridge called the Anjok and propose an improved string model which has delay line controller in physical modeling of the Gayageum. Movable bridge, the Anjok determines the length of vibrating string and transmits the vibration of each string to the body of the Gayageum. We analyze the variations in frequency domain and implement the Anjok model as parametric form using the first-order polynomial fitting in logarithmic scale graph, because the length of string changes fundamental frequency. In order to implement the Anjok model, frequency fitting, tension fitting and frequency fitting using leaky integrator are used. The frequency fitting using leaky integrator has the best results among those. Proposed string model with the Anjok model can represent real tuning system of the real Gayageum and the proposed model could synthesize sounds which is similar to original sounds.

Study on the Mechanism of Manifestation of Ecological Toxicity in Heavy Metal Contaminated Soil Using the Sensing System of Earthworm Movement (지렁이 움직임 감지 시스템을 이용한 중금속 오염 토양의 생태독성 발현 메커니즘에 대한 연구)

  • Lee, Woo-Chun;Lee, Sang-Hun;Jeon, Ji-Hun;Lee, Sang-Woo;Kim, Soon-Oh
    • Economic and Environmental Geology
    • /
    • v.54 no.3
    • /
    • pp.399-408
    • /
    • 2021
  • Natural soil was artificially contaminated with heavy metals (Cd, Pb, and Zn), and the movement of earthworm was characterized in real time using the ViSSET system composed of vibration sensor and the other components. The manifestation mechanism of ecological toxicity of heavy metals was interpreted based on the accumulative frequency of earthworm movement obtained from the real-time monitoring as well as the conventional indices of earthworm behavior, such as the change in body weight before and after tests and biocumulative concentrations of each contaminant. The results showed the difference in the earthworm movement according to the species of heavy metal contaminants. In the case of Cd, the earthworm movement was decreased with increasing its concentration and then tended to be increased. The activity of earthworm was severely increased with increasing Pb concentration, but the movement of earthworm was gradually decreased with increasing Zn concentration. The body weight of earthworm was proved to be greatly decreased in the Zn-contaminated soil, but it was similarly decreased in Cd- and Pb-contaminated soils. The bioaccumulation factor (BAF) was higher in the sequence of Cd > Zn > Pb, and particularly the biocumulative concentration of Pb did not show a clear tendency according to the Pb concentrations in soil. It was speculated that Cd is accumulated as a metallothionein-bound form in the interior of earthworm for a long time. In particular, Cd has a bad influence on the earthworm through the critical effect at its higher concentrations. Pb was likely to reveal its ecotoxicity via skin irritation or injury of sensory organs rather than ingestion pathway. The ecotoxicity of Zn seemed to be manifested by damaging the cell membranes of digestive organs or inordinately activating metabolism. Based on the results of real-time monitoring of earthworm movement, the half maximal effective concentration (EC50) of Pb was estimated to be 751.2 mg/kg, and it was similar to previously-reported ones. The study confirmed that if the conventional indices of earthworm behavior are combined with the results of newly-proposed method, the mechanism of toxicity manifestation of heavy metal contaminants in soils is more clearly interpreted.

Study of Examples for Air Bag Non-deployment Including Rear Collision and Failure Phenomenon by Damage of Control Parts in Vehicle Air Bag (자동차 에어백의 제어부품 불량에 의한 고장현상 및 후방 추돌에 관련된 에어백 미전개에 대한 사례 연구)

  • Lee, Il Kwon;Kim, Young Gyu;Moon, Hak Hook
    • Journal of the Korean Institute of Gas
    • /
    • v.16 no.6
    • /
    • pp.102-106
    • /
    • 2012
  • The purpose of this paper is to study the failure cases in relation to system of Air Bag in vehicle happened in the field. In the first example, it was separated the soldering parts connected the wire pin between air bag module and clock spring of air bag. Whenever the pin shake by the car's vibration, the driver verified the malfunction phenomenon appeared air bag warning lamp on instrument panel in front of driver's seat. in car inside room. The second example, it verified the warning lamp lighting phenomenon of air bag by produced the circuit plate non-contacting of single an element in air bag electronic control unit. The third example, it verified the light of air bag warning indicator lamp by separated with soldering parts connecting inner pin and resistance terminal of seat belt pretensioner using passenger seat. The fourth example, when the passenger car crash a back of truck, the former bumper get jammed under the latter as the roof height of car low less than that. Therefore, the impact of Car's collision verified that don't transfer with body frame of vehicle because of no attachment impact sensor in it.

Assessment of Train Running Safety, Ride Comfort and Track Serviceability at Transition between Floating Slab Track and Conventional Concrete Track (플로팅 슬래브궤도와 일반 콘크리트궤도 접속구간에서의 열차 주행 안전, 승차감 및 궤도 사용성 평가)

  • Jang, Seung-Yup;Yang, Sin-Chu
    • Journal of the Korean Society for Railway
    • /
    • v.15 no.1
    • /
    • pp.48-61
    • /
    • 2012
  • It is of great importance to assure the running safety, ride comfort and serviceability in designing the floating slab track for mitigation of train-induced vibration. In this paper, for this, analyzed are the system requirements for the running safety, ride comfort and serviceability, and then, the behavior of train and track at the floating slab track including the transition zone to the conventional concrete slab track according to several main design variables such as system natural frequency, arrangement of spring at transition, spacing of spring isolators, damping ratio and train speed, using the dynamic analysis technique considering the train-track interaction. The results of this study demonstrate that the discontinuity of the support stiffness at the transition results in a drastic increase of the dynamic response such as wheel-rail interaction force, rail bending stress and rail uplift force. Hence, it is efficient to decrease the spacing of springs or to increase the spring constants at the transition to obtain the running safety and serviceability. On the other hand, the vehicle body acceleration as a measure of ride comfort is little affected by the discontinuity of the stiffness at the transition, but by the system tuning frequency; thus, to obtain the ride comfort, it is of great significance to select the appropriate system tuning frequency. In addition, the effects of damping ratio, spacing of springs and train speed on the dynamic behavior of the system have been discussed.

A Study on Enhancing Efficiency for Feeling-of-Hit in Games (게임의 타격감에 대한 효율 향상 연구)

  • Moon, Sung-Jun;Cho, Hyung-Je
    • Journal of Korea Game Society
    • /
    • v.12 no.2
    • /
    • pp.3-14
    • /
    • 2012
  • As one of elements to be able to endow more exciting and higher degree of completion for game, the feeling of hit is realized by image, sound and body-sensing (vibration) effects. When the feeling of hit is realized by game developer, most proper effects will be chosen with regard to genre, system and standpoint of world for the game. In general, most of choices for the effects are performed by the experience of game developer or referring the other games. Nevertheless the related studies are not significant in comparison with the importance for the feeling of hit, and the fundamental studies are mostly not accomplished. This paper introduces a study on efficiency and important factors for the feeling of hit by analyzing the properties and degrees of feeling for all effects to represent the feeling of hit through experiments. For this, a software simulator was implemented to test all effects and therewith the final results are presented through questionnaires for the feeling of hit sent to gamers. Our results are expected to be used to accomplish higher degree of completion for mobile games or web games with limited resources.

A Study of EEG Analysis for the Moxibustion Stimulation (간접 뜸 자극에 관한 EEG 분석)

  • Park, Dong-Hee;Yoon, Dong-Eop;Jo, Bong-Kwan;Song, Hong-Bock;Kim, Young-Jin
    • Proceedings of the Korean Institute of Information and Commucation Sciences Conference
    • /
    • 2007.10a
    • /
    • pp.170-174
    • /
    • 2007
  • Although research efforts for brain waves have prospered in medicine and engineering, acupuncture still has a long way to go regarding researches on brain waves analysis. Thus this study set out to analyze brain waves stimulated by indirect mugwort moxibustion, which was part of acupuncture techniques, and to investigate their correlations with the automatic nervous system. For the experiments, stimulation was given to Jungwan, Shingwol and Gwanwon, which were some of the spots on the body suitable for acupuncture, through indirect mugwort moxibustion. The subjects' brain waves were measured before the stimulation, during the stimulation, and one hour and two hours after the stimulation. The measurements were analyzed with Matlab 7.0 for FFT and frequency power spectrum. Then the ${\alpha}$, ${\beta}$, ${\delta}$, and ${\theta}$ waves were analyzed and examined for changes to the percentage of each frequency and to the amplitude of vibration according to the stages of stimulation. The EEG data of the entire brain were translated into FFT to analyze the percentage of the ${\alpha}$, ${\beta}$, ${\delta}$, and ${\theta}$ waves. As a result, the ${\alpha}$ waves recorded a double increase after the stimulation. The power spectrum analysis results of the entire brain decreased the ${\alpha}$ and ${\beta}$ waves dropping in the energy level, which suggested that the parasympathetic nerves were activated. When the results of the study were compared with those of the previous study, it's confirmed that indirect moxibustion stimulation could cause changes to the automatic nervous system and bring stability to those who were nervous or under stress due to the proportionate increase of the ${\alpha}$ waves.

  • PDF

An Implementation of Brain-wave DB building system for Artifacts prevention using Face Tracking (얼굴 추적 기반의 잡파 혼입 방지가 가능한 뇌파 DB구축 시스템 구현)

  • Shin, Jeong-Hoon;Kwon, Hyeong-Oh
    • Journal of the Institute of Convergence Signal Processing
    • /
    • v.10 no.1
    • /
    • pp.40-48
    • /
    • 2009
  • Leading of the computer, IT technology has make great strides. As a information-industry-community was highly developed, user's needs to convenience about intelligence and humanization of interface is being increase today. Nowadays, researches with are related to BCI are progress put the application-technology development first in importance eliminating research about fountainhead technology with DB construction. These problems are due to a BCI-related research studies have not overcome the initial level, and not toward a systematic study. Brain wave are collected from subjects is a signal that the signal is appropriate and necessary in the experiment is difficult to distinguish. In addition, brain wave that it's not necessary to collect the experiment, serious eyes flicker, facial and body movements of an EMG and electrodes attached to the state, noise, vibration, etc. It is hard to collect accurate brain wave was caused by mixing disturbance wave in experiment on the environment. This movement, and the experiment of subject impact on the environment due to the mixing disturbance wave can cause that lowering cognitive and decline of efficiency when embodied BCI system. Therefore, in this paper, we propose an accurate and efficient brain-wave DB building system that more exactness and cognitive basis studies when embodied BCI system with brain-wave. For the minimize about brain wave DB with mixing disturbance, we propose a DB building method using an automatic control and prevent unnecessary action, put to use the subjects face tracking.

  • PDF

A Study on Determination of Suspension Spring Coefficient of Electric UTV for Agricultural Use through Virtual Simulation (가상 시뮬레이션을 통한 농업용 전동 UTV의 서스펜션 스프링 계수 결정 연구)

  • Kim, Sang Cheol;Kim, Seong Hoon;Kim, Seung Wan
    • Smart Media Journal
    • /
    • v.11 no.5
    • /
    • pp.75-81
    • /
    • 2022
  • In order to respond to carbon neutrality and climate change in agriculture, agricultural machinery, which has been developed centered on internal combustion engines, needs to be converted to an electric-based technology that does not emit greenhouse gases. In this study, simulations for electric UTV suspension design were performed to reduce vibration and shock of electric UTV for agricultural use and to improve driving stability and control performance of the vehicle. The simulation was performed by dividing the tolerance load of the vehicle body and the loaded load state. The range of motion of the suspension spring of UTV is within 30% of the range of motion under condition B under tolerance, the displacement of the UTV suspension with full load is reduced from 264mm to 121mm, and the damping speed is 260mm/s to 300mm/s that it can be seen that the range of motion is within 60%. Suspension design of electric UTV for multi-purpose agricultural work is a very important factor for maintaining agricultural work ability in towing work such as tillage as well as driving and terrain adaptation. The results of this study can be usefully used to determine the spring parameters with the appropriate damping range so that the electric UTV can be used for various agricultural tasks.

A Comparative Study on the Effect of Tamping Materials on the Impact Efficiency at Blasting Work (발파작업 시 충전매질에 따른 발파효과 비교 연구)

  • Bae, Sang-Soo;Han, Woo-Jin;Jang, Seung-Yup;Bang, Myung-Seok
    • Journal of the Korean Geosynthetics Society
    • /
    • v.21 no.2
    • /
    • pp.57-65
    • /
    • 2022
  • This study simulated the shock wave propagation through the tamping material between explosives and hole wall at blasting works and verified the effect of tamping materials. The Arbitrary Lagrangian-Eulerian(ALE) method was selected to model the mixture of solid (Lagrangian) and fluid (Eulerian). The time series analysis was carried out during blasting process time. Explosives and tamping materials (air or water) were modeled with finite element mesh and the hole wall was assumed as a rigid body that can determine the propagation velocity and shock force hitting the hole wall from starting point (explosives). The numerical simulation results show that the propagation velocity and shock force in case of water were larger than those in case of air. In addition, the real site at blasting work was modeled and simulated. The rock was treated as elasto-plastic material. The results demonstrate that the instantaneous shock force was larger and the demolished block size was smaller in water than in air. On the contrary, the impact in the back side of explosives hole was smaller in water, because considerable amount of shock energy was used to demolish the rock, but the propagation of compression through solid becomes smaller due to the damping effect by rock demolition. Therefore, It can be proven that the water as the tamping media was more profitable than air.