A digraph is locally semicomplete if for every vertex $\chi$, the set of in-neighbors as well as the set of out-neighbors of $\chi$ induce semicomplete digraphs. Let D be a k-connected locally semicomplete digraph with k $\geq$ 3 and g denote the length of a longest induced cycle of D. It is shown that if D has at least 7(k-1)g vertices, then D has a factor composed of k cycles; furthermore, if D is semicomplete and with at least 5k + 1 vertices, then D has a factor composed of k cycles and one of the cycles is of length at most 5. Our results generalize those of [3] for tournaments to locally semicomplete digraphs.
The multiplicative version of Wiener index (${\pi}$-index), proposed by Gutman et al. in 2000, is equal to the product of the distances between all pairs of vertices of a (molecular) graph G. In this paper, we first present some sharp bounds in terms of the order and other graph parameters including the diameter, degree sequence, Zagreb indices, Zagreb coindices, eccentric connectivity index and Merrifield-Simmons index for ${\pi}$-index of general connected graphs and trees, as well as a Nordhaus-Gaddum-type bound for ${\pi}$-index of connected triangle-free graphs. Then we study the behavior of ${\pi}$-index upon the case when removing a vertex or an edge from the underlying graph. Finally, we investigate the extremal properties of ${\pi}$-index within the set of trees and unicyclic graphs.
본 논문에서는 삼각형 메쉬(triangular mesh)로 이루어진 3차원 모델의 연결 정보(connectivity data)와 형상 정보(geometry data)를 삼각형 팬(triangle fan) 구조에 기반하여 효율적으로 압축하는 부호화 기법을 제안한다. 첫째로, 연결 정보의 무손실 부호화로 꼭지점 차수 왜곡(vertex degree warping) 기법을 제안한다. 기존의 알고리듬이 연결 정보와 형상 정보를 분리하여 부호화하는데 반해 제안하는 알고리듬은 연결 정보를 부호화하는데 형상 정보를 이용하여 압축 효율을 높인다. 둘째로, 형상 정보를 압축하기 위해 이중 평행사변형 예측(dual parallelogram prediction) 기법을 제안한다. 삼각형 팬 구조를 이용함으로써 기존의 삼각형 스트립(triangle strip) 기반의 알고리듬보다 정확한 형상 예측이 가능하고, 예측 오차가 작아지게 된다. 다양한 3차원 메쉬 모델에 대한 모의 실험을 통하여 제안하는 알고리듬이 기존의 알고리듬보다 우수한 압축 성능을 나타냄을 확인하다.
We propose a new method of path planning for cleaning robots. Path planning problem for cleaning robots is different from conventional path planning problems in which finding a collision-free trajectory from a start point to a goal point is focused. In the case of cleaning robots, however, a planned path should cover all area to be cleaned. To resolve this problem in a systematic way, we propose a method based on a graph model as follows: at first, partition a given map into proper regions, then transform a divided region to a vertex and a connectivity between regions to an edge of a graph. Finally, a region is divided into sub-regions so that the graph has a unary tree which is the simplest Hamilton path. The effectiveness of the proposed method is shown by computer simulation results.
m차원 평면 $R^m$ 상에 n개의 점들 $p_i$가 주어질 때, 범위 r에 대해서, 점 $p_i$로부터 거리 r이내 점들의 집합 $T_i$를 생각한다. m=1 일 때, $T_i$는 직선상의 구간이고, m=2일 때, $T_i$는 평면상의 원에 해당된다. 집합 $T_i$들을 정점에 대응하고, 두 집합이 교차하는 경우에 대응하는 두 정점 사이에 간선를 연결하면 교차 그래프 G를 얻을 수 있다. m=1일 때, G는 진구간 그래프(proper interval graph), m=2일 때, G는 단위 원판 그래프(unit disk graph)라고 부른다. 본 논문에서는 범위 r이 변화하면 바뀌는 교차 그래프 G(r)에 관심이 있다. 특별히 G(r)가 연결 그래프가 되는 최소 r을 찾는 문제를 다룰 것이다. 이 문제에 대해서 진구간 그래프 G(r)에 대해서 O(n)시간 알고리즘, 단위 원판 그래프 G(r)에 대해서 $O(n^2{\log}\;n)$시간 알고리즘을 제안한다. 직선상의 점들이 추가 되거나 삭제되는 동적 환경 하에서 위 문제를 O(lon n)시간에 해결하는 알고리즘도 제안한다.
The commuting graph of an arbitrary ring R, denoted by ${\Gamma}(R)$, is a graph whose vertices are all non-central elements of R, and two distinct vertices a and b are adjacent if and only if ab = ba. In this paper, we investigate the connectivity, the diameter, the maximum degree and the minimum degree of the commuting graph of group ring $Z_nQ_8$. The main result is that $\Gamma(Z_nQ_8)$ is connected if and only if n is not a prime. If $\Gamma(Z_nQ_8)$ is connected, then diam($Z_nQ_8$)= 3, while $\Gamma(Z_nQ_8)$ is disconnected then every connected component of $\Gamma(Z_nQ_8)$ must be a complete graph with a same size. Further, we obtain the degree of every vertex in $\Gamma(Z_nQ_8)$, the maximum degree and the minimum degree of $\Gamma(Z_nQ_8)$.
상호연결망은 그래프로 모델링 할 수 있다: 노드는 정점으로 대응시키고, 링크는 에지로 대응시킨다. 상호연결망(그래프)의 지름은 서로 다른 모든 두 정점 사이의 최단경로 길이 중 최대이다. 상호연결망의 고장지름이란 연결도-1 개 이하의 임의의 정점에 고장이 있을 경우, 이들 고장 정점들을 제거한 연결망에서 모든 두 정점사이의 최단경로 길이 중 최대이다. 지름이 3이상이고 연결도가 r인 r-정규(regular) 그래프의 고장지름은 지름+1이상이다. 이 논문에서는 $m,n{\geq}3$ 인 2-차원 $m{\times}n$ 토러스에서 m=3 혹은 n=3일 때 고장지름은 max(m,n)이고, m,n>3일 때 고장지름은 지름 +1임을 보인다. 그리고 $k_i{\geq}3(1{\leq}i{\leq}d)$이고 $d{\geq}3$인 d- 차원 $k_1{\times}k_2{\times}{\cdots}{\times}k_d$ 토러스에서 서로 다른 임의의 두 정점 사이에 길이가 지름+1이하인 서로소인 경로들이 2d 개 존재함을 보인다. 두 정점 u와 v 사이의 서로소인 경로들이란, 공통의 정점들이 u와 v만 있는 경로들을 말한다. 이들 서로소인 경로들을 이용하여 $k_i{\geq}3(1{\leq}i{\leq}d)$이고 $d{\geq}3$인 d-차원 $k_1{\times}k_2{\times}{\cdots}{\times}k_d$ 토러스의 고장지름이 지름+1임을 보인다.
Bolser, Dan;Dafas, Panos;Harrington, Richard;Schroeder, Michael;Park, Jong
한국생물정보학회:학술대회논문집
/
한국생물정보시스템생물학회 2003년도 제2차 연례학술대회 발표논문집
/
pp.26-51
/
2003
Large scale protein interaction maps provide a new, global perspective with which to analyse protein function. PSIMAP, the Protein Structural Interactome Map, is a database of all the structurally observed interactions between superfamilies of protein domains with known three-dimensional structure in thePDB. PSIMAP incorporates both functional and evolutionary information into a single network. It makes it possible to age protein domains in terms of taxonomic diversity, interaction and function. One consequence of it is to predict the most important protein domain structure in evolution. We present a global analysis of PSIMAP using several distinct network measures relating to centrality, interactivity, fault-tolerance, and taxonomic diversity. We found the following results: ${\bullet}$ Centrality: we show that the center and barycenter of PSIMAP do not coincide, and that the superfamilies forming the barycenter relate to very general functions, while those constituting the center relate to enzymatic activity. ${\bullet}$ Interactivity: we identify the P-loop and immunoglobulin superfamilies as the most highly interactive. We successfully use connectivity and cluster index, which characterise the connectivity of a superfamily's neighbourhood, to discover superfamilies of complex I and II. This is particularly significant as the structure of complex I is not yet solved. ${\bullet}$ Taxonomic diversity: we found that highly interactive superfamilies are in general taxonomically very diverse and are thus amongst the oldest. This led to the prediction of the oldest and most important protein domain in evolution of lift. ${\bullet}$ Fault-tolerance: we found that the network is very robust as for the majority of superfamilies removal from the network will not break up the network. Overall, we can single out the P-loop containing nucleotide triphosphate hydrolases superfamily as it is the most highly connected and has the highest taxonomic diversity. In addition, this superfamily has the highest interaction rank, is the barycenter of the network (it has the shortest average path to every other superfamily in the network), and is an articulation vertex, whose removal will disconnect the network. More generally, we conclude that the graph-theoretic and taxonomic analysis of PSIMAP is an important step towards the understanding of protein function and could be an important tool for tracing the evolution of life at the molecular level.
최근 공동 연결 관계와 연속적인 정점 위치들의 움직임으로 이루어진 메쉬들의 모임, 즉 메쉬 시퀀스를 압축하는 연구가 활발하게 이루어지고 있다. 본 논문은 Khodakovsky 등이 제시한 준균일 메쉬 압축방법에 기반한 메쉬 시퀀스의 압축 알고리즘을 제시하고자 한다. 준균일 메쉬 시퀀스로의 메쉬 재구성을 이용한 메쉬 시퀀스 압축 알고리즘은 크게 두 부분으로 이루어진다. 첫 번째 부분은 주어진 비균일 메쉬 시퀀스로부터 준균일 메쉬 시퀀스를 생성하는 것이다. 준균일 메쉬를 생성하기 위해 본 논문에서는 MAPS 알고리즘을 사용하였다. 하지만 단일 메쉬에 대해 적용이 가능한 MAPS 알고리즘을 메쉬 시퀀스에 그대로 적용할 수 없다. 따라서 주어진 애니메이션에서의 정점 움직임을 고려하여 유사한 움직임을 가지는 영역별로 분할하고, 이 분할 정보과 정점의 움직임을 고려할 수 있도록 MAPS 알고리즘을 확장하였다. 두 번째 단계에서는 웨이블릿 변형과 메쉬 분할 정보를 이용해 준균일 메쉬를 압축하였다. 각 분할 영역의 변환 정보를 고려해 분할 영역 내 정점의 위치를 예측하고, 참조 프레임과의 차이값을 압축함으로써 효율적으로 준균일 메쉬 시퀀스를 압축하였다.
워터마킹 기술 중에 공간 영역을 주파수 영역으로 변환하여 워터마크 신호를 삽입하는 이유는 워터마크를 삭제하려는 악의적인 공격에 대해 살아 남을 수 있고 인간이 삽입되는 워터마크 신호를 쉽게 인지할 수 없는 주파수 대역을 고려할 수 있기 때문이다. 그러나 3차원 데이터의 비정규성(irregularity)으로 인하여 공간영역의 3차원 데이터를 주파수 영역으로 자연스럽게 변환한다는 것은 쉽지 않다. 본 논문에서는 3차원 메쉬(mesh) 데이터를 주파수 영역으로 변환하여 수행하는 새로운 워터마킹 방법을 제안한다. 이를 위해 우선 3차원 모델을 운행(traversing)하여 삼각형 스트립을 생성하고, 각 스트립에 속한 꼭지점 좌표들을 각 좌표축에 따라 독립적으로 1차원 DCT 변환한다. 그리고 쉽게 인지되지 않으면서도 불법적인 공격으로부터 워터마크 신호가 살아남기 위해 AC 계수의 중간 주파수 대역에 워터마크 신호를 삽입한다. 마지막으로, 컴퓨터 실험을 통해 제안한 3차원 데이터 워터마킹 방법은 무작위 잡음 첨가 공격이나 Affine 변환, 그리고 MPEG-4 SNHC의 표준 기하 압축에 강인하다는 것을 보였다.
본 웹사이트에 게시된 이메일 주소가 전자우편 수집 프로그램이나
그 밖의 기술적 장치를 이용하여 무단으로 수집되는 것을 거부하며,
이를 위반시 정보통신망법에 의해 형사 처벌됨을 유념하시기 바랍니다.
[게시일 2004년 10월 1일]
이용약관
제 1 장 총칙
제 1 조 (목적)
이 이용약관은 KoreaScience 홈페이지(이하 “당 사이트”)에서 제공하는 인터넷 서비스(이하 '서비스')의 가입조건 및 이용에 관한 제반 사항과 기타 필요한 사항을 구체적으로 규정함을 목적으로 합니다.
제 2 조 (용어의 정의)
① "이용자"라 함은 당 사이트에 접속하여 이 약관에 따라 당 사이트가 제공하는 서비스를 받는 회원 및 비회원을
말합니다.
② "회원"이라 함은 서비스를 이용하기 위하여 당 사이트에 개인정보를 제공하여 아이디(ID)와 비밀번호를 부여
받은 자를 말합니다.
③ "회원 아이디(ID)"라 함은 회원의 식별 및 서비스 이용을 위하여 자신이 선정한 문자 및 숫자의 조합을
말합니다.
④ "비밀번호(패스워드)"라 함은 회원이 자신의 비밀보호를 위하여 선정한 문자 및 숫자의 조합을 말합니다.
제 3 조 (이용약관의 효력 및 변경)
① 이 약관은 당 사이트에 게시하거나 기타의 방법으로 회원에게 공지함으로써 효력이 발생합니다.
② 당 사이트는 이 약관을 개정할 경우에 적용일자 및 개정사유를 명시하여 현행 약관과 함께 당 사이트의
초기화면에 그 적용일자 7일 이전부터 적용일자 전일까지 공지합니다. 다만, 회원에게 불리하게 약관내용을
변경하는 경우에는 최소한 30일 이상의 사전 유예기간을 두고 공지합니다. 이 경우 당 사이트는 개정 전
내용과 개정 후 내용을 명확하게 비교하여 이용자가 알기 쉽도록 표시합니다.
제 4 조(약관 외 준칙)
① 이 약관은 당 사이트가 제공하는 서비스에 관한 이용안내와 함께 적용됩니다.
② 이 약관에 명시되지 아니한 사항은 관계법령의 규정이 적용됩니다.
제 2 장 이용계약의 체결
제 5 조 (이용계약의 성립 등)
① 이용계약은 이용고객이 당 사이트가 정한 약관에 「동의합니다」를 선택하고, 당 사이트가 정한
온라인신청양식을 작성하여 서비스 이용을 신청한 후, 당 사이트가 이를 승낙함으로써 성립합니다.
② 제1항의 승낙은 당 사이트가 제공하는 과학기술정보검색, 맞춤정보, 서지정보 등 다른 서비스의 이용승낙을
포함합니다.
제 6 조 (회원가입)
서비스를 이용하고자 하는 고객은 당 사이트에서 정한 회원가입양식에 개인정보를 기재하여 가입을 하여야 합니다.
제 7 조 (개인정보의 보호 및 사용)
당 사이트는 관계법령이 정하는 바에 따라 회원 등록정보를 포함한 회원의 개인정보를 보호하기 위해 노력합니다. 회원 개인정보의 보호 및 사용에 대해서는 관련법령 및 당 사이트의 개인정보 보호정책이 적용됩니다.
제 8 조 (이용 신청의 승낙과 제한)
① 당 사이트는 제6조의 규정에 의한 이용신청고객에 대하여 서비스 이용을 승낙합니다.
② 당 사이트는 아래사항에 해당하는 경우에 대해서 승낙하지 아니 합니다.
- 이용계약 신청서의 내용을 허위로 기재한 경우
- 기타 규정한 제반사항을 위반하며 신청하는 경우
제 9 조 (회원 ID 부여 및 변경 등)
① 당 사이트는 이용고객에 대하여 약관에 정하는 바에 따라 자신이 선정한 회원 ID를 부여합니다.
② 회원 ID는 원칙적으로 변경이 불가하며 부득이한 사유로 인하여 변경 하고자 하는 경우에는 해당 ID를
해지하고 재가입해야 합니다.
③ 기타 회원 개인정보 관리 및 변경 등에 관한 사항은 서비스별 안내에 정하는 바에 의합니다.
제 3 장 계약 당사자의 의무
제 10 조 (KISTI의 의무)
① 당 사이트는 이용고객이 희망한 서비스 제공 개시일에 특별한 사정이 없는 한 서비스를 이용할 수 있도록
하여야 합니다.
② 당 사이트는 개인정보 보호를 위해 보안시스템을 구축하며 개인정보 보호정책을 공시하고 준수합니다.
③ 당 사이트는 회원으로부터 제기되는 의견이나 불만이 정당하다고 객관적으로 인정될 경우에는 적절한 절차를
거쳐 즉시 처리하여야 합니다. 다만, 즉시 처리가 곤란한 경우는 회원에게 그 사유와 처리일정을 통보하여야
합니다.
제 11 조 (회원의 의무)
① 이용자는 회원가입 신청 또는 회원정보 변경 시 실명으로 모든 사항을 사실에 근거하여 작성하여야 하며,
허위 또는 타인의 정보를 등록할 경우 일체의 권리를 주장할 수 없습니다.
② 당 사이트가 관계법령 및 개인정보 보호정책에 의거하여 그 책임을 지는 경우를 제외하고 회원에게 부여된
ID의 비밀번호 관리소홀, 부정사용에 의하여 발생하는 모든 결과에 대한 책임은 회원에게 있습니다.
③ 회원은 당 사이트 및 제 3자의 지적 재산권을 침해해서는 안 됩니다.
제 4 장 서비스의 이용
제 12 조 (서비스 이용 시간)
① 서비스 이용은 당 사이트의 업무상 또는 기술상 특별한 지장이 없는 한 연중무휴, 1일 24시간 운영을
원칙으로 합니다. 단, 당 사이트는 시스템 정기점검, 증설 및 교체를 위해 당 사이트가 정한 날이나 시간에
서비스를 일시 중단할 수 있으며, 예정되어 있는 작업으로 인한 서비스 일시중단은 당 사이트 홈페이지를
통해 사전에 공지합니다.
② 당 사이트는 서비스를 특정범위로 분할하여 각 범위별로 이용가능시간을 별도로 지정할 수 있습니다. 다만
이 경우 그 내용을 공지합니다.
제 13 조 (홈페이지 저작권)
① NDSL에서 제공하는 모든 저작물의 저작권은 원저작자에게 있으며, KISTI는 복제/배포/전송권을 확보하고
있습니다.
② NDSL에서 제공하는 콘텐츠를 상업적 및 기타 영리목적으로 복제/배포/전송할 경우 사전에 KISTI의 허락을
받아야 합니다.
③ NDSL에서 제공하는 콘텐츠를 보도, 비평, 교육, 연구 등을 위하여 정당한 범위 안에서 공정한 관행에
합치되게 인용할 수 있습니다.
④ NDSL에서 제공하는 콘텐츠를 무단 복제, 전송, 배포 기타 저작권법에 위반되는 방법으로 이용할 경우
저작권법 제136조에 따라 5년 이하의 징역 또는 5천만 원 이하의 벌금에 처해질 수 있습니다.
제 14 조 (유료서비스)
① 당 사이트 및 협력기관이 정한 유료서비스(원문복사 등)는 별도로 정해진 바에 따르며, 변경사항은 시행 전에
당 사이트 홈페이지를 통하여 회원에게 공지합니다.
② 유료서비스를 이용하려는 회원은 정해진 요금체계에 따라 요금을 납부해야 합니다.
제 5 장 계약 해지 및 이용 제한
제 15 조 (계약 해지)
회원이 이용계약을 해지하고자 하는 때에는 [가입해지] 메뉴를 이용해 직접 해지해야 합니다.
제 16 조 (서비스 이용제한)
① 당 사이트는 회원이 서비스 이용내용에 있어서 본 약관 제 11조 내용을 위반하거나, 다음 각 호에 해당하는
경우 서비스 이용을 제한할 수 있습니다.
- 2년 이상 서비스를 이용한 적이 없는 경우
- 기타 정상적인 서비스 운영에 방해가 될 경우
② 상기 이용제한 규정에 따라 서비스를 이용하는 회원에게 서비스 이용에 대하여 별도 공지 없이 서비스 이용의
일시정지, 이용계약 해지 할 수 있습니다.
제 17 조 (전자우편주소 수집 금지)
회원은 전자우편주소 추출기 등을 이용하여 전자우편주소를 수집 또는 제3자에게 제공할 수 없습니다.
제 6 장 손해배상 및 기타사항
제 18 조 (손해배상)
당 사이트는 무료로 제공되는 서비스와 관련하여 회원에게 어떠한 손해가 발생하더라도 당 사이트가 고의 또는 과실로 인한 손해발생을 제외하고는 이에 대하여 책임을 부담하지 아니합니다.
제 19 조 (관할 법원)
서비스 이용으로 발생한 분쟁에 대해 소송이 제기되는 경우 민사 소송법상의 관할 법원에 제기합니다.
[부 칙]
1. (시행일) 이 약관은 2016년 9월 5일부터 적용되며, 종전 약관은 본 약관으로 대체되며, 개정된 약관의 적용일 이전 가입자도 개정된 약관의 적용을 받습니다.