References
- J. Bang-Jensen, Locally semicomplete digraphs: A generalization of tournaments, J. Graph Theory 14 (1990), 371–390. https://doi.org/10.1002/jgt.3190140310
- J. Bang-Jensen, Y. Guo, G. Gutin and L. Volkmann, A classification of locally semicomplete digraphs, Discrete Math. 167/168 (1997), 101–114. https://doi.org/10.1016/S0012-365X(96)00219-1
- G.-T. Chen, R. J. Gould and H. Li, Partitioning Vertices of a Tournament into Independent Cycles, J. Combin. Theory Ser. B 83 (2001), 213–220 https://doi.org/10.1006/jctb.2001.2048
- Y. Guo, Locally Semicomplete Digraphs. PhD thesis, RWTH Aachen, Germany. Aachener Beitrage zur Mathematik, Band 13, Augustinus-Buchhandlung achen, 1995
- Y. Guo and L. Volkmann, On complementary cycles in locally semicomplete digraphs, Discrete Math. 135 (1994), 121–127 https://doi.org/10.1016/0012-365X(93)E0099-P
- Y. Guo and L. Volkmann, Locally semicomplete digraphs that are complementary m-pancyclic, J. Graph Theory 21 (1996), 121–136 https://doi.org/10.1002/(SICI)1097-0118(199602)21:2<121::AID-JGT2>3.0.CO;2-T
- J. W. Moon, On subtournaments of a tournament, Canad. Math. Bull. 9 (1996), 297–301 https://doi.org/10.4153/CMB-1966-038-7
- K. B. Reid, Two complementary circuits in two-connected tournaments, Ann. Discrete Math. 27 (1985), 321–334 https://doi.org/10.1016/S0304-0208(08)73025-1
- Z.-M. Song, Complementary cycles of all lengths in tournaments, J. Combin. Theory Ser. B 57 (1993), 18–25 https://doi.org/10.1006/jctb.1993.1002
Cited by
- Cycle factors in strongly connected local tournaments vol.310, pp.4, 2010, https://doi.org/10.1016/j.disc.2009.09.025
- Problems and conjectures concerning connectivity, paths, trees and cycles in tournament-like digraphs vol.309, pp.18, 2009, https://doi.org/10.1016/j.disc.2008.04.016
- All 2-connected in-tournaments that are cycle complementary vol.308, pp.11, 2008, https://doi.org/10.1016/j.disc.2006.12.008