• Title/Summary/Keyword: Verilog-A

Search Result 449, Processing Time 0.053 seconds

An Advanced Paradigm of Electronic System Level Hardware Description Language; Bluespec SystemVerilog (진화한 설계 패러다임의 블루스펙 시스템 레벨 하드웨어 기술 언어)

  • Moon, Sangook
    • Proceedings of the Korean Institute of Information and Commucation Sciences Conference
    • /
    • 2013.05a
    • /
    • pp.757-759
    • /
    • 2013
  • Until just a few years ago, digital circuit design techniques in register transfer level using Verilog or VHDL have been recognized as the up-to-date way compared with the traditional schematic design, and truly they have been used as the most popular skill for most chip designs. However, with the advent of era in which the complexity of semiconductor chip counts over billion transistors with advanced manufacturing technology, designing in register transfer level became too complex to meet the requirements of the needs, so the design paradigm has to change so that both design and synthesis can be done in higher level of abstraction. Bluespec SystemVerilog (BSV) is the only HDL which enables both circuit design and generating synthesizable code in the system level developed so far. In this contribution, I survey and analyze the features which supports the new paradigm in the BSV HDL, not very familiar to industry yet.

  • PDF

Introduction to System Modeling and Verification of Digital Phase-Locked Loop (디지털 위상고정루프의 시스템 모델링 및 검증 방법 소개)

  • Shinwoong, Kim
    • Journal of IKEEE
    • /
    • v.26 no.4
    • /
    • pp.577-583
    • /
    • 2022
  • Verilog-HDL-based modeling can be performed to confirm the fast operation characteristics after setting the design parameters of each block considering the stability of the system by performing linear phase-domain modeling on the phase-locked loop. This paper proposed Verilog-HDL modeling including DCO noise and DTC nonlinear characteristic. After completing the modeling, the time-domain transient simulation can be performed to check the feasibility and the functionality of the proposed PLL system, then the phase noise result from the system design based on the functional model can be verified comparing with the ideal phase noise graph. As a result of the comparison of simulation time (6 us), the Verilog-HDL-based modeling method (1.43 second) showed 484 times faster than the analog transistor level design (692 second) implemented by TSMC 0.18-㎛.

Physics-based OLED Analog Behavior Modeling

  • Lee, Sang-Gun;Hattori, Reiji
    • Journal of Information Display
    • /
    • v.10 no.3
    • /
    • pp.101-106
    • /
    • 2009
  • In this study, a physical OLED analog behavior model for SPICE simulation was described using the Verilog-A language. The model was presented through theoretical equations for the J-V characteristics of OLED derived according to the internalcarrier emission equation based on a diffusion model at the Schottky barrier contact, and the mobility equation based on the Pool-Frenkel model. The accuracy of this model was examined by comparing it with the results of the device simulation that was conducted.

Derivation of Current-Voltage Equation for OLED using Device Simulation

  • Lee, Sang-Gun;Hattori, Reiji
    • 한국정보디스플레이학회:학술대회논문집
    • /
    • 2009.10a
    • /
    • pp.1212-1215
    • /
    • 2009
  • The theoretical equations for J-V characteristics in an OLED was derived according to the internal carrier emission equation based on a diffusion model at Schottky barrier contact and the mobility equation based on the Pool-Frenkel model. The J-V characteristics of OLED are presented using a behavioral model for analog systems (Verilog-A language), and the accuracy of this model was verified by comparing with the device simulation results.

  • PDF

A Design of ADPCM CODEC Core for Digital Voice and Image Processing SOC (디지털 음성 및 영상 처리용 SOC를 위한 ADPCM CODEC 코어의 설계)

  • 정중완;홍석일;한희일;조경순
    • Proceedings of the IEEK Conference
    • /
    • 2001.06b
    • /
    • pp.333-336
    • /
    • 2001
  • This paper describes the design and implementation results of 40, 32, 24 and 16kbps ADPCM encoder and decoder circuit, based on the protocol CCITT G.726. We verified the ADPCM algorithm using C language and designed the RTL circuit with Verilog HDL. The circuit has been simulated by Verilog-XL, synthesized by Design Compiler and verified using Xilinx FPGA. Since the synthesized circuit includes a small number of gates, it is expected to be used as a core module in the digital voice and image processing SOC.

  • PDF

Macro-Model of Magnetic Tunnel Junction for STT-MRAM including Dynamic Behavior

  • Kim, Kyungmin;Yoo, Changsik
    • JSTS:Journal of Semiconductor Technology and Science
    • /
    • v.14 no.6
    • /
    • pp.728-732
    • /
    • 2014
  • Macro-model of magnetic tunnel junction (MTJ) for spin transfer torque magnetic random access memory (STT-MRAM) has been developed. The macro-model can describe the dynamic behavior such as the state change of MTJ as a function of the pulse width of driving current and voltage. The statistical behavior has been included in the model to represent the variation of the MTJ characteristic due to process variation. The macro-model has been developed in Verilog-A.

The verification of the hardware implementation of packet classification algorithm on multiple fields by Veriolg-HDL (Verilog-HDL을 이용한 다중필드 패킷분류 알고리듬의 설계 검증)

  • Hong, Seong-Pyo;Kim, Jun-Hyeong;Choe, Won-Ho
    • Proceedings of the KIEE Conference
    • /
    • 2003.11c
    • /
    • pp.852-855
    • /
    • 2003
  • This paper reports the RFC(Recursive Flow Classification) algorithm that is available on multiple fields. It is easy to be implemented by both software and hardware. For high speed classification of packets, the implementation of RFC is essential by hardware. Hence, in this paper, RFC algorithm is simulated by Verilog-HDL, and it verify the efficiency of the algorithm. The result shows that the algorithm can perform a packet classification within several cycles. It is not only much faster than software implementation but also enough to support OC192c.

  • PDF

OLED Analog Behavioral Modeling Based on Physics

  • Lee, Sang-Gun;Hattori, Reiji
    • 한국정보디스플레이학회:학술대회논문집
    • /
    • 2008.10a
    • /
    • pp.431-434
    • /
    • 2008
  • The physical OLED analog behavioral model for SPICE simulation has been described using Verilog-A language. The model is based on the carrier-balance between the hole and electron injected through Schottky barrier at anode and cathode. The accuracy of this model was examined by comparing with the results from device simulation.

  • PDF

Design of JPEG Core for Real-Time Image Compression and Decompression (실시간 영상 압축 및 복원 기능을 갖는 JPEG 코어 설계)

  • 김성오;김상현;김승호;조경순
    • Proceedings of the IEEK Conference
    • /
    • 2002.06b
    • /
    • pp.301-304
    • /
    • 2002
  • This paper describes the design and implementation results of JPEG core, based on the ITU-T Recommendation T.81. We designed the RTL circuit in Verilog HDL, making reference to the JPEG program from the Independent JPEG Group. The circuit has been simulated with Verilog-XL, synthesized with Design Compiler and verified using Altera FPGA. Since the synthesized circuit includes a small number of gates, it is expected to be used as a core module in image processing SOC.

  • PDF

Design of Fractional-N Digital PLL for IoT Application (IoT 어플리케이션을 위한 분수분주형 디지털 위상고정루프 설계)

  • Kim, Shinwoong
    • Journal of IKEEE
    • /
    • v.23 no.3
    • /
    • pp.800-804
    • /
    • 2019
  • This paper presents a dual-loop sub-sampling digital PLL for a 2.4 GHz IoT applications. The PLL initially performs a divider-based coarse lock and switches to a divider-less fine sub-sampling lock. It achieves a low in-band phase noise performance by enabling the use of a high resolution time-to-digital converter (TDC) and a digital-to-time converter (DTC) in a selected timing range. To remove the difference between the phase offsets of the coarse and fine loops, a phase offset calibration scheme is proposed. The phase offset of the fine loop is estimated during the coarse lock and reflected in the coarse lock process, resulting in a smooth transition to the fine lock with a stable fast settling. The proposed digital PLL is designed by SystemVerilog modeling and Verilog-HDL and fully verified with simulations.