• Title/Summary/Keyword: Verilog-A

Search Result 450, Processing Time 0.028 seconds

Design and Implementation of Human-Detecting Radar System for Indoor Security Applications (실내 보안 응용을 위한 사람 감지 레이다 시스템의 설계 및 구현)

  • Jang, Daeho;Kim, Hyeon;Jung, Yunho
    • Journal of IKEEE
    • /
    • v.24 no.3
    • /
    • pp.783-790
    • /
    • 2020
  • In this paper, the human detecting radar system for indoor security applications is proposed, and its FPGA-based implementation results are presented. In order to minimize the complexity and memory requirements of the computation, the top half of the spectrogram was used to extract features, excluding the feature extraction techniques that require complex computation, feature extraction techniques were proposed considering classification performance and complexity. In addition, memory requirements were minimized by designing a pipeline structure without storing the entire spectrogram. Experiments on human, dog and robot cleaners were conducted for classification, and 96.2% accuracy performance was confirmed. The proposed system was implemented using Verilog-HDL, and we confirmed that a low-area design using 1140 logics and 6.5 Kb of memory was possible.

A Study on the Design of a RISC core with DSP Support (DSP기능을 강화한 RISC 프로세서 core의 ASIC 설계 연구)

  • 김문경;정우경;이용석;이광엽
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • v.26 no.11C
    • /
    • pp.148-156
    • /
    • 2001
  • This paper proposed embedded application-specific microprocessor(YS-RDSP) whose structure has an additional DSP processor on chip. The YS-RDSP can execute maximum four instructions in parallel. To make program size shorter, 16-bit and 32-bit instruction lengths are supported in YS-RDSP. The YS-RDSP provides programmability. controllability, DSP processing ability, and includes eight-kilobyte on-chip ROM and eight-kilobyte RAM. System controller on the chip gives three power-down modes for low-power operation, and SLEEP instruction changes operation statue of CPU core and peripherals. YS-RDSP processor was implemented with Verilog HDL on top-down methodology, and it was improved and verified by cycle-based simulator written in C-language. The verified model was synthesized with 0.7um, 3.3V CMOS standard cell library, and the layout size was 10.7mm78.4mm which was implemented by using automatic P&R software.

  • PDF

Design of Digital Signal Processor for Ethernet Receiver Using TP Cable (TP 케이블을 이용하는 이더넷 수신기를 위한 디지털 신호 처리부 설계)

  • Hong, Ju-Hyung;SunWoo, Myung-Hoon
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • v.32 no.8A
    • /
    • pp.785-793
    • /
    • 2007
  • This paper presents the digital signal processing submodule of a 100Base-TX Ethernet receiver to support 100Mbps at TP cable channel. The proposed submodule consists of programmable gain controller, timing recovery, adaptive equalizer and baseline wander compensator. The measured Bit Error Rate is less than $10^{-12}BER$ when continuously receiving data up to 150m. The proposed signal processing submodule is implemented in digital circuits except for PLL and amplifier. The performance improvement of the proposed equalizer and BLW compensator is measured about 1dB compared with the existing architecture that removes BLW using errors of an adaptive equalizer. The architecture has been modeled using Verilog-HDL and synthesized using samsung $0.18{\mu}m$ cell library. The implemented digital signal processing submodule operates at 142.7 MHz and the total number of gates are about 128,528.

Real-time 3D Converting System using Stereoscopic Video (스테레오 비디오를 이용한 실시간 3차원 입체 변환 시스템)

  • Seo, Young-Ho;Choi, Hyun-Jun;Kim, Dong-Wook
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • v.33 no.10C
    • /
    • pp.813-819
    • /
    • 2008
  • In this paper, we implemented a real-time system which displays 3-dimensional (3D) stereoscopic image with stereo camera. The system consists of a set of stereo camera, FPGA board, and 3D stereoscopic LCD. Two CMOS image sensor were used for the stereo camera. FPGA which processes video data was designed with Verilog-HDL, and it can accommodate various resolutional videos. The stereoscopic image is configured by two methods which are side-by-side and up-down image configuration. After the left and right images are converted to the type for the stereoscopic display, they are stored into SDRAM. When the next frame is inputted into FPGA from two CMOS image sensors, the previous video data is output to the DA converter for displaying it. From this pipeline operation, the real-time operation is possible. After the proposed system was implemented into hardware, we verified that it operated exactly.

Design of Asynchronous Library and Implementation of Interface for Heterogeneous System (비동기 라이브러리 설계와 Heterogeneous시스템을 위한 인테페이스 설계)

  • Jung, Hwi-Sung;Lee, Joon-Il;Lee, Moon-Key
    • Journal of the Institute of Electronics Engineers of Korea SD
    • /
    • v.37 no.9
    • /
    • pp.47-54
    • /
    • 2000
  • We designed asynchronous event logic library with 0.25um CMOS technology and interface chip for heterogeneous system with high-speed asynchronous FIFO operating at 1.6GHz. Optimized asynchronous standard cell layouts and Verilog models are designed for top-down design methodology. A Method for mitigating a design bottleneck when it comes to tolerate clock skew is described. This communication scheme using clock control circuits, which is used for the free of synchronization failures, is analyzed and implemented. With clock control circuit and FIFO, high-speed communication between synchronous modules operating at different clock frequencies or with asynchronous modules is performed. The core size of implemented high-speed 32bit-interface chip for heterogeneous system is about $1.1mm{\times}1.1mm$.

  • PDF

Low Power High Frequency Design for Data Transfer for RISC and CISC Architecture (RISC와 CISC 구조를 위한 저전력 고속 데이어 전송)

  • Agarwal Ankur;Pandya A. S.;Lho Young-Uhg
    • Journal of the Korea Institute of Information and Communication Engineering
    • /
    • v.10 no.2
    • /
    • pp.321-327
    • /
    • 2006
  • This paper presents low power and high frequency design of instructions using ad-hoc techniques at transistor level for full custom and semi-custom ASIC(Application Specific Integrated Circuit) designs. The proposed design has been verified at high level using Verilog-HDL and simulated using ModelSim for the logical correctness. It is then observed at the layout level using LASI using $0.25{\mu}m$ technology and analyzed for timing characteristic under Win-spice simulation environment. The result shows the significant reduction up to $35\%$ in the power consumption by any general purpose processor like RISC or CISC. A significant reduction in the propagation delay is also observed. increasing the frequency for the fetch and execute cycle for the CPU, thus increasing the overall frequency of operation.

Proposal of 3D Graphic Processor Using Multi-Access Memory System (Multi-Access Memory System을 이용한 3D 그래픽 프로세서 제안)

  • Lee, S-Ra-El;Kim, Jae-Hee;Ko, Kyung-Sik;Park, Jong-Won
    • The Journal of the Institute of Internet, Broadcasting and Communication
    • /
    • v.19 no.4
    • /
    • pp.119-128
    • /
    • 2019
  • Due to the nature of the 3D graphics processor system, many mathematical calculations are required and parallel processing research using GPU (Graphics Processing Unit) is being performed for high-speed processing. In this paper, we propose a 3D graphics processor using MAMS, a parallel processor that does not use cache memory, to solve the GPU problem of increasing bandwidth caused by cache memory miss and the problem that 3D shader processing speed is not constant. The 3D graphics processor using MAMS proposed in this paper designed Vertex shader, Pixel shader, Tiling and Rasterizing structure using DirectX command analysis, the FPGA(Xilinx Virtex6@100MHz) board for MAMS was constructed and designed using Verilog. We compared the processing time of the developed FPGA (100Mhz) and nVidia GeForce GTX 660 (980Mhz), the processing time using GTX 660 was not constant and suing MAMS was constant.

Design of AES Cryptographic Processor with Modular Round Key Generator (모듈화된 라운드 키 생성회로를 갖는 AES 암호 프로세서의 설계)

  • 최병윤;박영수;전성익
    • Journal of the Korea Institute of Information Security & Cryptology
    • /
    • v.12 no.5
    • /
    • pp.15-25
    • /
    • 2002
  • In this paper a design of high performance cryptographic processor which implements AES Rijndael algorithm is described. To eliminate performance degradation due to round-key computation delay of conventional processor, the on-the-fly precomputation of round key based on modified round structure is adopted. And on-the-fly round key generator which supports 128, 192, and 256-bit key has modular structure. The designed processor has iterative structure which uses 1 clock cycle per round and supports three operation modes, such as ECB, CBC, and CTR mode which is a candidate for new AES modes of operation. The cryptographic processor designed in Verilog-HDL and synthesized using 0.251$\mu\textrm{m}$ CMOS cell library consists of about 51,000 gates. Simulation results show that the critical path delay is about 7.5ns and it can operate up to 125Mhz clock frequency at 2.5V supply. Its peak performance is about 1.45Gbps encryption or decryption rate under 128-bit key ECB mode.

Optimized hardware implementation of CIE1931 color gamut control algorithms for FPGA-based performance improvement (FPGA 기반 성능 개선을 위한 CIE1931 색역 변환 알고리즘의 최적화된 하드웨어 구현)

  • Kim, Dae-Woon;Kang, Bong-Soon
    • Journal of the Korea Institute of Information and Communication Engineering
    • /
    • v.25 no.6
    • /
    • pp.813-818
    • /
    • 2021
  • This paper proposes an optimized hardware implementation method for existing CIE1931 color gamut control algorithm. Among the post-processing methods of dehazing algorithms, existing algorithm with relatively low computations have the disadvantage of consuming many hardware resources by calculating large bits using Split multiplier in the computation process. The proposed algorithm achieves computational reduction and hardware miniaturization by reducing the predefined two matrix multiplication operations of the existing algorithm to one. And by optimizing the Split multiplier computation, it is implemented more efficient hardware to mount. The hardware was designed in the Verilog HDL language, and the results of logical synthesis using the Xilinx Vivado program were compared to verify real-time processing performance in 4K environments. Furthermore, this paper verifies the performance of the proposed hardware with mounting results on two FPGAs.

Study of Electronic Hardware Integrated Failure Rate: Considering Physics of Failure Rate and Radiation Failures Rate (물리 고장률과 방사선 고장률을 반영한 전자 하드웨어 통합 고장률 분석 연구)

  • Dong-min Lee;Chang-hyeon Kim;Kyung-min Park;Jong-whoa Na
    • Journal of Advanced Navigation Technology
    • /
    • v.28 no.2
    • /
    • pp.216-224
    • /
    • 2024
  • This paper presents a method for analyzing the reliability of hardware electronic equipment, taking into account failures caused by radiation. Traditional reliability analysis primarily focuses on the wear out failure rate and often neglects the impact of radiation failure rates. We calculate the wear out failure rate through physics of failure analysis, while the radiation failure rate is semi-empirically estimated using the Verilog Fault Injection tool. Our approach aims to ensure reliability early in the development process, potentially reducing development time and costs by identifying circuit vulnerabilities in advance. As an illustrative example, we conducted a reliability analysis on the ISCAS85 circuit. Our results demonstrate the effectiveness of our method compared to traditional reliability analysis tools. This thorough analysis is crucial for ensuring the reliability of FPGAs in environments with high radiation exposure, such as in aviation and space applications.