• Title/Summary/Keyword: Verilog-A

Search Result 449, Processing Time 0.031 seconds

A module generator for variable-precision multiplier core with error compensation for low-power DSP applications (저전력 DSP 응용을 위한 오차보상을 갖는 가변 정밀도 승산기 코어 생성기)

  • Hwang, Seok-Ki;Lee, Jin-Woo;Shin, Kyung-Wook
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • v.30 no.2A
    • /
    • pp.129-136
    • /
    • 2005
  • A multiplier generator, VPM_Gen (Variable-Precision Multiplier Generator), which generates Verilog-HDL models of multiplier cores with user-defined bit-width specification, is described. The bit-widths of operands are parameterized in the range of $8-bit{\sim}32-bit$ with 1-bit step, and the product from multiplier core can be truncated in the range of $8-bit{\sim}64-bit$ with 2-bit step, resulting that the VPM_Gen can generate 3,455 multiplier cores. In the case of truncating multiplier output, by eliminating the circuits corresponding to the truncation part, the gate counts and power dissipation can be reduced by about 40% and 30%, respectively, compared with full-precision multiplier. As a result, an area-efficient and low-power multiplier core can be obtained. To minimize truncation error, an adaptive error-compensation method considering the number of truncation bits is employed. The multiplier cores generated by VPM_Gen have been verified using Xilinx FFGA board and logic analyzer.

Design of Lightweight S-Box for Low Power AES Cryptosystem (저전력 AES 암호시스템을 위한 경량의 S-Box 설계)

  • Lee, Sang-Hong
    • The Journal of the Institute of Internet, Broadcasting and Communication
    • /
    • v.22 no.1
    • /
    • pp.1-6
    • /
    • 2022
  • In this paper, the design of lightweight S-Box structure for implementing a low power AES cryptosystem based on composite field. In this approach, the S-Box is designed as a simple structure by which the three modules of x2, λ, and GF((22)2) merge into one module for improving the usable area and processing speed on GF(((22)2)2). The designed AES S-Box is modelled in Veilog-HDL at structural level, and a logic synthesis is also performed through the use of Xilinx ISE 14.7 tool, where Spartan 3s1500l is used as a target FPGA device. It is shown that the designed S-Box is correctly operated through simulation result, where ModelSim 10.3. is used for performing timing simulation.

Implementation of Exchange Rate Forecasting Neural Network Using Heterogeneous Computing (이기종 컴퓨팅을 활용한 환율 예측 뉴럴 네트워크 구현)

  • Han, Seong Hyeon;Lee, Kwang Yeob
    • Asia-pacific Journal of Multimedia Services Convergent with Art, Humanities, and Sociology
    • /
    • v.7 no.11
    • /
    • pp.71-79
    • /
    • 2017
  • In this paper, we implemented the exchange rate forecasting neural network using heterogeneous computing. Exchange rate forecasting requires a large amount of data. We used a neural network that could leverage this data accordingly. Neural networks are largely divided into two processes: learning and verification. Learning took advantage of the CPU. For verification, RTL written in Verilog HDL was run on FPGA. The structure of the neural network has four input neurons, four hidden neurons, and one output neuron. The input neurons used the US $ 1, Japanese 100 Yen, EU 1 Euro, and UK £ 1. The input neurons predicted a Canadian dollar value of $ 1. The order of predicting the exchange rate is input, normalization, fixed-point conversion, neural network forward, floating-point conversion, denormalization, and outputting. As a result of forecasting the exchange rate in November 2016, there was an error amount between 0.9 won and 9.13 won. If we increase the number of neurons by adding data other than the exchange rate, it is expected that more precise exchange rate prediction will be possible.

Design of a Delayed Dual-Core Lock-Step Processor with Automatic Recovery in Soft Errors (소프트 에러 발생 시 자동 복구하는 이중 코어 지연 락스텝 프로세서의 설계)

  • Juho Kim;Seonghyun Yang;Seongsoo Lee
    • Journal of IKEEE
    • /
    • v.27 no.4
    • /
    • pp.683-686
    • /
    • 2023
  • In this paper, we designed a Delayed Dual Core Lock-Step (D-DCLS) processor where two cores operate same instructions with delay and the result is compared to mitigate soft errors and common mode failures in automotive electronic systems. Because D-DCLS does not know which core an error occurred in, each core must be recovered to the point before the error occurred, but complex hardware modifications are required to return all intermediate values on the pipeline stage. In this paper, in order for easy hardware implementation, all register values are saved to a buffer whenever a branch instruction is executed. When an error is detected, the saved register values are automatically restored, and then 'BX LR' instruction is executed to return to the last branch point. The proposed D-DCLS processor was designed using Verilog HDL and was confirmed to continue normal operation after automatically recovering error.

System Development and IC Implementation of High-quality and High-performance Image Downscaler Using 2-D Phase-correction Digital Filters (2차원 위상 교정 디지털 필터를 이용한 고성능/고화질의 영상 축소기 시스템 개발 및 IC 구현)

  • 강봉순;이영호;이봉근
    • Journal of the Institute of Convergence Signal Processing
    • /
    • v.2 no.3
    • /
    • pp.93-101
    • /
    • 2001
  • In this paper, we propose an image downscaler used in multimedia video applications, such as DTV, TV-PIP, PC-video, camcorder, videophone and so on. The proposed image downscaler provides a scaled image of high-quality and high-performance. This paper will explain the scaling theory using two-dimensional digital filters. It is the method that removes an aliasing noise and decreases the hardware complexity, compared with Pixel-drop and Upsamling. Also, this paper will prove it improves scaling precisians and decreases the loss of data, compared with the Scaler32, the Bt829 of Brooktree, and the SAA7114H of Philips. The proposed downscaler consists of the following four blocks: line memory, vertical scaler, horizontal scaler, and FIFO memory. In order to reduce the hardware complexity, the using digital filters are implemented by the multiplexer-adder type scheme and their all the coefficients can be simply implemented by using shifters and adders. It also decreases the loss of high frequency data because it provides the wider BW of 6MHz as adding the compensation filter. The proposed downscaler is modeled by using the Verilog-HDL and the model is verified by using the Cadence simulator. After the verification is done, the model is synthesized into gates by using the Synopsys. The synthesized downscaler is Placed and routed by the Mentor with the IDEC-C632 0.65${\mu}{\textrm}{m}$ library for further IC implementation. The IC master is fixed in size by 4,500${\mu}{\textrm}{m}$$\times$4,500${\mu}{\textrm}{m}$. The active layout size of the proposed downscaler is 2,528${\mu}{\textrm}{m}$$\times$3,237${\mu}{\textrm}{m}$.

  • PDF

IQ Unbalance Compensation for OPDM Based Wireless LANs (무선랜 시스템에서의 IQ 부정합 보상 기법 연구)

  • Kim, Ji-Ho;Jung, Yun-Ho;Kim, Jae-Seok
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • v.32 no.9C
    • /
    • pp.905-912
    • /
    • 2007
  • This paper proposes an efficient estimation and compensation scheme of IQ imbalance for OFDM-based WLAN systems in the presence of symbol timing error. Since the conventional scheme assumes perfect time synchronization, the criterion of the scheme used to derive the estimation of IQ imbalance is inadequate in the presence of the symbol timing error and the system performance is seriously degraded. New criterion and compensation scheme considering the effect of symbol timing error are proposed. With the proposed scheme, the IQ imbalance can be almost perfectly eliminated in the presence of symbol timing error. The bit error rate performance of the proposed scheme is evaluated by the simulation. In case of 54 Mbps transmission mode in IEEE 802.11a system, the proposed scheme achieves a SNR gain of 4.3dB at $BER=2{\cdot}10^{-3}$. The proposed compensation algorithm of IQ imbalance is implemented using Verilog HDL and verified. The proposed IQ imbalance compensator is composed of 74K logic gates and 6K bits memory from the synthesis result using 0.18um CMOS technology.

Development and Verification of SoC Platform based on OpenRISC Processor and WISHBONE Bus (OpenRISC 프로세서와 WISHBONE 버스 기반 SoC 플랫폼 개발 및 검증)

  • Bin, Young-Hoon;Ryoo, Kwang-Ki
    • Journal of the Institute of Electronics Engineers of Korea SD
    • /
    • v.46 no.1
    • /
    • pp.76-84
    • /
    • 2009
  • This paper proposes a SOC platform which is eligible for education and application SOC design. The platform, fully synthesizable and reconfigurable, includes the OpenRISC embedded processor, some basic peripherals such as GPIO, UART, debug interlace, VGA controller and WISHBONE interconnect. The platform uses a set of development environment such as compiler, assembler, debugger and RTOS that is built for HW/SW system debugging and software development. Designed SOC, IPs and Testbenches are described in the Verilog HDL and verified using commercial logic simulator, GNU SW development tool kits and the FPGA. Finally, a multimedia SOC derived from the SOC platform is implemented to ASIC using the Magnachip cell library based on 0.18um 1-poly 6-metal technology.

Design of General Peripheral Interface Using Serial Link (직렬 링크 방식의 주변 장치 통합 인터페이스 설계)

  • Kim, Do-Seok;Chung, Hoon-Ju;Lee, Yong-Hwan
    • The Journal of Korea Institute of Information, Electronics, and Communication Technology
    • /
    • v.4 no.1
    • /
    • pp.68-75
    • /
    • 2011
  • The performance of peripheral devices is improving rapidly to meet the needs of users for multimedia data. Therefore, the peripheral interface with wide bandwidth and high transmission rate becomes necessary to handle large amounts of data in real time for multiple high-performance devices. PCI Express is a fast serial interface with the use of packets that are compatible with previous PCI and PCI-X. In this paper, we design and verify general peripheral interface using serial link. It includes two kinds of traffic class (TC) labels which are mapped to virtual channels (VC). The design adopts TC/VC mapping and the scheme of arbitration by priority. The design uses a packet which can be transmitted through up to four transmission lanes. The design of general peripheral interface is described in Verilog HDL and verified using ModelSim. For FPGA verification, Xilinx ISE and SPARTAN XC3S400 are used.We used Synopsys Design Compiler as a synthesis tool and the used library was MagnaChip 0.35um technology.

Design of Multiplierless Lifting-based Wavelet Transform using Pattern Search Methods (패턴 탐색 기법을 사용한 Multiplierless 리프팅 기반의 웨이블릿 변환의 설계)

  • Son, Chang-Hoon;Park, Seong-Mo;Kim, Young-Min
    • Journal of Korea Multimedia Society
    • /
    • v.13 no.7
    • /
    • pp.943-949
    • /
    • 2010
  • This paper presents some improvements on VLSI implementation of lifting-based 9/7 wavelet transform by optimization hardware multiplication. The proposed solution requires less logic area and power consumption without performance loss compared to previous wavelet filter structure based on lifting scheme. This paper proposes a better approach to the hardware implementation using Lefevre algorithm based on extensions of Pattern search methods. To compare the proposed structure to the previous solutions on full multiplier blocks, we implemented them using Verilog HDL. For a hardware implementation of the two solutions, the logical synthesis on 0.18 um standard cells technology show that area, maximum delay and power consumption of the proposed architecture can be reduced up to 51%, 43% and 30%, respectively, compared to previous solutions for a 200 MHz target clock frequency. Our evaluation show that when design VLSI chip of lifting-based 9/7 wavelet filter, our solution is better suited for standard-cell application-specific integrated circuits than prior works on complete multiplier blocks.

Implementation of a Parallel Viterbi Decoder for High Speed Multimedia Communications (멀티미디어 통신용 병렬 아키텍쳐 고속 비터비 복호기 설계)

  • Lee, Byeong-Cheol
    • Journal of the Institute of Electronics Engineers of Korea SD
    • /
    • v.37 no.2
    • /
    • pp.78-84
    • /
    • 2000
  • The Viterbi decoders can be classified into serial Viterbi decoders and parallel Viterbi decoders. Parallel Viterbi decoders can handle higher data rates than serial Viterbl decoders. This paper designs and implements a fully parallel Viterbi decoder for high speed multimedia communications. For high speed operations, the ACS (Add-Compare-Select) module consisting of 64 PEs (Processing Elements) can compute one stage in a clock. In addition, the systolic away structure with 32 pipeline stages is developed for the TB (traceback) module. The implemented Viterbi decoder can support code rates 1/2, 2/3, 3/4, 5/6 and 7/8 using punctured codes. We have developed Verilog HDL models and performed logic synthesis. The 0.6 ${\mu}{\textrm}{m}$ SAMSUNG KG75000 SOG cell library has been used. The implemented Viterbi decoder has about 100,400 gates, and is running at 70 MHz in the worst case simulation.

  • PDF