• Title/Summary/Keyword: Vehicle design

Search Result 4,941, Processing Time 0.027 seconds

수중운동의 표적추적성능 해석과 제어기 설계

  • 윤강섭;이만형
    • Proceedings of the Korean Society of Precision Engineering Conference
    • /
    • 1995.04b
    • /
    • pp.330-335
    • /
    • 1995
  • The actuator's response delay, disturbance and measurement noise can often cause a significant error in the target tracking of an underwater vehicle. The first purpose of this paper is error analysis about motion of an underwater vehicle when the closed loop system has actuator and disturbance and noise. The underwater vehicle is simulated for cases of various disturbances. The second purpose is robust controller design for the underwater vehicle with parameter uncertainty. So, two robust control methods are applied for the underwater vehicle. One is standard $H_{\infty}$ control, and the other is time-varying sliding mode control with modified saturation function. Suboptimal design parameters for $H_{\infty}$ control, and design parameters for time-varying switching surfaces are provided Simulations for the two controllers are carried out and their performances are analyzed.lyzed.

  • PDF

Design Optimization for vehicle Pillar Section Shape Using Simple Finite Element Model (단순유한요소모델을 이용한 차체필라 형상최적설계)

  • 이상범
    • Journal of the Korean Society of Manufacturing Technology Engineers
    • /
    • v.9 no.6
    • /
    • pp.133-139
    • /
    • 2000
  • Vibrational characteristics of the vehicle structure are mainly influenced by the shape of the pillar cross section. In this paper a vehicle structural optimization technique has been developed to investigate a lightweight vehicle structure subject to constraints on natural frequencies in a simple beam-and-shell model. In this technique, the optimization procedures involve two stages. In the first stage, the section procedures involve tow stages. In the first stage, the section properties of beam elements of the vehicle structure has been optimized to have minimum weight while satisfying the constraints of natural frequencies. And, in the second stage, the shape of the cross section of the elements of the structure has been determined.

  • PDF

Structural Design and Analysis for the Reinforced Frame of Vehicle (자동차 보강 프레임에 대한 구조 설계 및 해석)

  • Kang, Sung-Soo;Cho, Seong-Keun
    • Journal of the Korean Society of Manufacturing Technology Engineers
    • /
    • v.19 no.4
    • /
    • pp.504-510
    • /
    • 2010
  • To achieve the structural safety of the vehicle, designs in various cases are carried out by using CATIA program. It is promoted the relaxation of stresses by collisions from the front portion, the side part and the rear portion of the vehicle. In this study, we conduct a variety of design of frames for the light weight frame of the vehicle and structural analysis, to protect the driver by adding reinforced frame. In the case of such a collision, there are maximum stresses greater than yield strength of steel and a very large local plastic deformation at the collision part.

The Concept Design and Structural Strength Analysis for Double-Deck Train Carbody using Alluminum Extruded Panels (알루미늄 압출재를 적용한 2층 열차 차체의 기초설계 및 구조강도해석)

  • 황원주;김형진;강부병;허현무
    • Proceedings of the KSR Conference
    • /
    • 2002.05a
    • /
    • pp.364-369
    • /
    • 2002
  • The purpose of this paper is to introduce the concept design and the structural strength of the double-deck rolling stock vehicle. Aluminum is very useful material for the carbody structure due to its characteristic of light weight. Large alumillum extrusion profiles(panels) have toe of merits such as easy production of complicated shapes, reduction of welding and cutting lines, and cutting down the labor cost. AED type is being applied to the standard EMUs and the EMUs Kwangju subway in Korea. Light material recommended the double-deck rolling stock vehicle because the center of gravity of the train is higher and its weight is heavier than those of the normal vehicle. So we applied the technology of the large aluminum extrusion profiles(panels) to the double-deck vehicle. We performed the structural strength analysis and examined its safety.

  • PDF

Vehicle Body Design of Armored Robot for Complex Disaster (복합 재난을 위한 장갑형 로봇의 차체 설계)

  • Park, Sang Hyun;Jin, Maolin;Kim, Young-Ryul;Kim, Doik;Kim, Jun-Sik;Shin, Dong Bin;Suh, Jinho
    • The Journal of Korea Robotics Society
    • /
    • v.13 no.4
    • /
    • pp.248-255
    • /
    • 2018
  • In this paper, a design for a vehicle body of an armored robot for complex disasters is described. The proposed design considers various requirements in complex disaster situations. Fire, explosion, and poisonous gas may occur simultaneously under those sites. Therefore, the armored robot needs a vehicle body that can protect people from falling objects, high temperature, and poisonous gas. In addition, it should provide intuitive control devices and realistic surrounding views to help the operator respond to emergent situations. To fulfill these requirements of the vehicle body, firstly, the frame was designed to withstand the impact of falling objects. Secondly, the positive pressure device and the cooling device were applied. Thirdly, a panoramic view was implemented that enables real-time observation of surroundings through a number of image sensors. Finally, the cockpit in the vehicle body was designed focused on the manipulability of the armored robot in disaster sites.

Lateral Vehicle Control Based on Active Flight Control Technology

  • Seo Young-Bong;Choi Jae-Weon;Duan Guang Ren
    • Journal of Mechanical Science and Technology
    • /
    • v.20 no.7
    • /
    • pp.981-992
    • /
    • 2006
  • In this paper, a lateral vehicle control using the concept of control configured vehicle (CCV) is presented. The control objectives for the lateral dynamics of a vehicle include the ability to follow a chosen variable without significant motion change in other specified variables. The analysis techniques for decoupling of the aircraft motions are utilized to develop vehicle lateral control with advanced mode. Vehicle lateral dynamic is determined to have the steering input and control torque input. The additional vehicle modes are also defined to using CCV concept. We use right eigenstructure assignment techniques and command generator tracker to design a control law for an lateral vehicle dynamics. The desired eigenvectors are chosen to achieve the desired decoupling (i.e., lateral direction speed and yaw rate). The command generator tracker is used to ensure steady-state tracking of the driver's command. Finally, the developed design is utilized by using the lateral vehicle dynamic with four wheel.

Lateral Vehicle Control Based on Active Flight Control (능동비행제어기술에 기반한 자동차 횡방향 제어)

  • Seo Young-Bong;Duan Guang Ren;Choi Jae-Weon
    • Journal of Institute of Control, Robotics and Systems
    • /
    • v.12 no.10
    • /
    • pp.1002-1011
    • /
    • 2006
  • In this paper, a lateral vehicle control using the concept of control configured vehicle(CCV) is presented. The control objectives for the lateral dynamics of a vehicle include the ability to commend a chosen variable without significant motion change in other specified variables. The analysis techniques fur decoupling of the aircraft motions are utilized to develop vehicle lateral control with advanced mode. Vehicle lateral dynamic is determined to have the steering input and control torque input. The additional vehicle modes are also defined to using CCV concept. We use right eigenstructure assignment techniques and command generator tracker to design a control law for an lateral vehicle dynamics. The desired eigenvectors are chosen to achieve the desired decoupling(i.e., lateral direction speed and yaw rate). The command generator tracker is used to ensure steady-state tracking of the driver's command. Finally, the developed design is utilized by using the lateral vehicle dynamic with four wheel.

Design and Characteristic Analysis of Hybrid-Type Levitation and Propulsion Device for High-Speed Maglev Vehicle (초고속 자기부상열차를 위한 하이브리드형 부상 추진 시스템의 설계 및 특성해석)

  • Cho, Han-Wook;Kim, Chang-Hyun;Han, Hyung-Suk;Lee, Jong-Min;Kim, Bong-Sup;Kim, Dong-Sung;Lee, Young-Sin
    • The Transactions of The Korean Institute of Electrical Engineers
    • /
    • v.59 no.4
    • /
    • pp.715-721
    • /
    • 2010
  • This paper deals with the design and characteristic analysis of electro-magnet/permanent-magnet (EM-PM) hybrid levitation and propulsion device for high-speed magnetically levitated (maglev) vehicle. The machine requires PMs with high coercive force in order to levitate the vehicle by only PMs, and propulsion force is supplied by long-stator linear synchronous motor (LSM). The advantages of this configuration are an increasing levitation airgap length and decreasing total weight of the vehicle, because of the zero-power levitation control. Several design considerations such as machine structure, manufacturing, and control strategy are described. Moreover, the levitation and propulsion device for high-speed maglev vehicle has been designed and analyzed usign the electromagnetic circuit and FE analysis. In order to verify the design scheme and feasibility of maglev application, 3-DOF static force test set is implemented and tested. The obtained experimental data using the static tester shows the validity of the design and analysis approaches.

Optimal Design of Magnetorheological Shock Absorbers for Passenger Vehicle via Finite Element Method (자기유변유체를 이용한 승용차량 쇽 업소버의 유한요소 최적설계)

  • Sung, Kum-Gil;Choi, Seung-Bok
    • Transactions of the Korean Society for Noise and Vibration Engineering
    • /
    • v.18 no.2
    • /
    • pp.169-176
    • /
    • 2008
  • This paper presents optimal design of controllable magnetorheological(MR) shock absorbers for passenger vehicle. In order to achieve this goal, two MR shock absorbers (one for front suspension; one for rear suspension) are designed using an optimization methodology based on design specifications for a commercial passenger vehicle. The optimization problem is to find optimal geometric dimensions of the magnetic circuits for the front and rear MR shock absorbers in order to improve the performance such as damping force as an objective function. The first order optimization method using commercial finite element method(FEM) software is adopted for the constrained optimization algorithm. After manufacturing the MR shock absorbers with optimally obtained design parameters, their field-dependent damping forces are experimentally evaluated and compared with those of conventional shock absorbers. In addition, vibration control performances of the full-vehicle installed with the proposed MR shock absorbers are evaluated under bump road condition and obstacle avoidance test.

Optimum Design of SUV Suspension Parameters Considering Rollover Stability (전복 안정성을 고려한 SUV 현가장치 파라미터의 최적설계)

  • Lee, Sang-Beom;Jang, Young-Jin;Yim, Hong-Jae;Nah, Do-Baek
    • Journal of the Korean Society of Manufacturing Technology Engineers
    • /
    • v.18 no.4
    • /
    • pp.410-416
    • /
    • 2009
  • In recent years, the rollover accident of large class of vehicles has become important safety issue. Even though the rollover form a small percentage of all traffic accidents, they have a fatal effect upon the driver and passenger. Among the traffic accidents occurred in driving, the rollover is the major cause of traffic fatalities. Therefore, it is required to develop the analytical and experimental techniques for predicting rollover propensity of vehicles and also to improve the vehicle suspension design in the viewpoint of rollover resistance. In this study, the parameter sensitivities for the roll angle of SUV suspension are analyzed, and then the determined design parameters are optimized by using the regression model function of the response surface methods. The analysis results show that the roll angle of the optimized vehicle is decreased as compared with the initial vehicle and also the rollover possibility is decreased when the roll rate of the front suspension is larger than the roll rate of the rear suspension.

  • PDF