• Title/Summary/Keyword: Vehicle Violating

Search Result 12, Processing Time 0.026 seconds

Development of Vehicle Detection System for Vehicle Violating the Operation of Multi-Seater Private Lane (다인승 전용차로 위반차량의 검지 시스템 개발)

  • Gunhyoung Park
    • Proceedings of the Korean Society of Computer Information Conference
    • /
    • 2023.07a
    • /
    • pp.643-644
    • /
    • 2023
  • 본 논문에서는 고속도로 전용차로에서의 운행기준을 위반한 차량을 검지하는 시스템을 제안한다. 다인승 탑승차를 별도의 차로로 통행하도록 하여 혼잡도를 해소하겠다는 정책을 시행하고 있으며, 9인승 이상 차량에 6인 이상 텁숭자를 다인승 통행차량으로 정의하며, 이러한 기준을 만족하지 않는 차량을 자동 검지하는 시스템이다. 트리거 신호 검지기와 4조의 적외선 카메라로 차량 내부 촬영하고 결과 이미지를 분석하여 자동으로 다인승 차량을 판별하여 운행 위반을 검지한다. 테스트 결과 주야간에 관계없이 80% 이상의 우수한 검지율을 나타내었다.

  • PDF

A Study on Recognition of Automobile Type and Plate Number Using Neural Network (신경회로망을 이용한 자동차 종류 및 차량번호 자동인식에 관한 연구)

  • Bae, Youn-Oh;Lee, Young-Jin;Chang, Yong-Hoon;Lee, Kwon-Soon
    • Proceedings of the KIEE Conference
    • /
    • 1996.07b
    • /
    • pp.1107-1109
    • /
    • 1996
  • In this paper, we discuss the automatic recognition system of vehicle types and licence plate numbers using artificial neural networks, which will be used as vehicle identifier. We confine to expose the vehicle licence number for violating bus lane and stolen cars. Therefore, the vehicle height, width and distribution profile are used as the feature parameters of vehicle type. This system is composed of two parts: one is an image preprocessor of vehicle images and the other one is a pattern classifier by neural networks. The experimental results show that our method has good results for the recognition of vehicle types and numbers.

  • PDF

Developments of a Path Planning Algorithm and Simulator for Unmanned Ground Vehicle (무인자율차량을 위한 경로계획 알고리즘 및 시뮬레이터 개발)

  • Kim, Sang-Gyum;Kim, Sung-Gyun;Lee, Yong-Woo
    • Transactions of the Korean Society of Automotive Engineers
    • /
    • v.15 no.3
    • /
    • pp.1-9
    • /
    • 2007
  • A major concern for Autonomous Military Robot in the rough terrain is the problem of moving robot from an initial configuration to goal configuration. In this paper, We generate a local path to looking for the best route to move an goal configuration while avoiding known obstacle from world model, not violating the mobility constraints of robot. Trough a Simulator for Unmanned Autonomous Vehicle, We can simulate a traversability of unmanned autonomous vehicle based on steering, acceleration, braking command obtained from local path planning.

A Heuristic Algorithm for Multi-path Orienteering Problem with Capacity Constraint (용량제약이 있는 다경로 오리엔티어링 문제의 해법에 관한 연구)

  • Hwang, Hark;Park, Keum Ae;Oh, Yong Hui
    • Journal of Korean Institute of Industrial Engineers
    • /
    • v.33 no.3
    • /
    • pp.303-311
    • /
    • 2007
  • This study deals with a type of vehicle routing problem faced by manager of some department stores during peak sales periods. The problem is to find a set of traveling paths of vehicles that leave a department store and arrive at a destination specified for each vehicle after visiting customers without violating time and capacity constraints. The mathematical model is formulated with the objective of maximizing the sum of the rewards collected by each vehicle. Since the problem is known to be NP-hard, a heuristic algorithm is developed to find the solution. The performance of the algorithm is compared with the optimum solutions obtained from CPLEX for small size problems and a priority-based Genetic Algorithm for large size problems.

DYNAMIC MODELING AND ANALYSIS OF VEHICLE SMART STRUCTURES FOR FRONTAL COLLISION IMPROVEMENT

  • Elemarakbi, A.M.;Zu, J.W.
    • International Journal of Automotive Technology
    • /
    • v.5 no.4
    • /
    • pp.247-255
    • /
    • 2004
  • The majority of real world frontal collisions involves partial overlap (offset) collision, in which only one of the two longitudinal members is used for energy absorption. This leads to dangerous intrusions of the passenger compartment. Excessive intrusion is usually generated on the impacted side causing higher contact injury risk on the occupants compared with full frontal collision. The ideal structure needs to have extendable length when the front-end structure is not capable to absorb crash energy without violating deceleration pulse requirements. A smart structure has been proposed to meet this ideal requirement. The proposed front-end structure consists of two hydraulic cylinders integrated with the front-end longitudinal members of standard vehicles. The work carried out in this paper includes developing and analyzing mathematical models of two different cases representing vehicle-to-vehicle and vehicle-to-barrier in full and offset collisions. By numerical crash simulations, this idea has been evaluated and optimized. It is proven form numerical simulations that the smart structures bring significantly lower intrusions and decelerations. In addition, it is shown that the mathematical models are valid, flexible, and can be used in an effective way to give a quick insight of real life crashes.

Six Sigma Robust Design for Railway Vehicle Suspension (철도차량 현수장치의 식스시그마 강건 설계)

  • Lee, Kwang-Ki;Park, Chan-Kyoung;Han, Seung-Ho
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.33 no.10
    • /
    • pp.1132-1138
    • /
    • 2009
  • The spring constants of primary suspensions for a railway vehicle are optimized by a robust design process, in which the response surface models(RSMs) of their dynamic responses are constructed via the design of experiment(DOE). The robust design process requires an intensive computation to evaluate exactly a probabilistic feasibility for the robustness of dynamic responses with their probabilistic variances for the railway vehicle. In order to overcome the computational process, the process capability index $C_{pk}$ is introduced which enables not only to show the mean value and the scattering of the product quality to a certain extent, but also to normalize the objective functions irrespective of various different dimensions. This robust design, consequently, becomes to optimize the $C_{pk}$ subjected to constraints, i.e. 2, satisfying six sigma. The proposed method shows not only an improvement of some $C_{pk}$ violating the constraints obtained by the conventional optimization, but also a significant decrease of the variance of the $C_{pk}$.

A Study on the Optimization Design of Check Valve for Marine Use (선박용 체크밸브의 최적설계에 관한 연구)

  • Lee, Choon-Tae
    • Journal of Power System Engineering
    • /
    • v.21 no.6
    • /
    • pp.56-61
    • /
    • 2017
  • The check valves are mechanical valves that permit fluids to flow in only one direction, preventing flow from reversing. It is classified as one way directional valves. There are various types of check valves that used in a marine application. A lift type check valve uses the disc to open and close the passage of fluid. The disc lift up from seat as pressure below the disc increases, while drop in pressure on the inlet side or a build up of pressure on the outlet side causes the valve to close. An important concept in check valves is the cracking pressure which is the minimum upstream pressure at which the valve will operate. On the other hand, optimization is a process of finding the best set of parameters to reach a goal while not violating certain constraints. The AMESim software provides NLPQL(Nonlinear Programming by Quadratic Lagrangian) and genetic algorithm(GA) for optimization. NLPQL is the implementation of a SQP(sequential quadratic programming) algorithm. SQP is a standard method, based on the use of a gradient of objective functions and constraints to solve a non-linear optimization problem. A characteristic of the NLPQL is that it stops as soon as it finds a local minimum. Thus, the simulation results may be highly dependent on the starting point which user give to the algorithm. In this paper, we carried out optimization design of the check valve with NLPQL algorithm.

An Optimal Design of the Front Wheel Drive Engine Mount System (전륜구동형 승용차의 엔진마운트 시스템 최적설계)

  • Kim, M.S.;Kim, H.S.;Choi, D.H.
    • Transactions of the Korean Society of Automotive Engineers
    • /
    • v.1 no.3
    • /
    • pp.74-82
    • /
    • 1993
  • Optimal designs of a 3-point and a 4-point engine mount system are presented for reducing the idle shake of a Front Wheel Drive(FWD) vehicle. Design variables used in this study are the locations, the angles and the stiffness of an engine mount system. The goal of the optimization is minimizing the transmitted force without violating the constraints such as static weight sag, resonant frequency and side limits of design variables. The Augmented Lagrange Multiplier(ALM) Method is used for solving the nonlinear constrained optimization. The generalized Jacobi and the impedence method are employed for a free vibration analysis and a forced response analysis. The trend of analysis results well meet that of the experimental results. The optimization results reveal that the 4-point system transmits less torque than the 3-point system. It is also found from the design sensitivity analysis that the vibration characteristics of the 4-point system is less sensitive than those of the 3-point system.

  • PDF

A Study on Introduction to the Highway Lane Usage Violation Enforcement System (고속도로 차로통행방법 위반단속체계 구상)

  • Lee, Ki-Young;Lee, Don-Ju;Chang, Myung-Soon;Kim, Tae-Ho
    • The Journal of The Korea Institute of Intelligent Transport Systems
    • /
    • v.8 no.3
    • /
    • pp.42-51
    • /
    • 2009
  • Korean government is managing a system that appoints various type of cars into lanes based on the number of lanes. The institution has been abolished and enacted time and again. This paper analyzes ten sections of express way to clarify the efficiencies of the system. The result shows that violation rate and the number of accident have a positive correlation. This paper suggests regulation of violating cars and controlment by perceiving car registration number for efficient operation of the institution.

  • PDF

A Study on the Optimal Design of Automotive Gas Spring (차량용 가스스프링의 최적설계에 관한 연구)

  • Lee, Choon Tae
    • Journal of Drive and Control
    • /
    • v.14 no.4
    • /
    • pp.45-50
    • /
    • 2017
  • The gas spring is a hydropneumatic adjusting element, consisting of a pressure tube, a piston rod, a piston and a connection fitting. The gas spring is filled with compressed nitrogen within the cylinder. The filling pressure acts on both sides of the piston and because of area difference it produces an extension force. Therefore, a gas spring is similar in function compare to mechanical coil spring. Conversely, optimization is a process of finding the best set of parameters to reach a goal while not violating certain constraints. The AMESim software provides NLPQL (Nonlinear Programming by Quadratic Lagrangian) and GA (genetic algorithm) for optimization. The NLPQL method builds a quadratic approximation to the Lagrange function and linear approximations to all output constraints at each iteration, starting with the identity matrix for the Hessian of the Lagrangian, and gradually updating it using the BFGS method. On each iteration, a quadratic programming problem is solved to find an improved design until the final convergence to the optimum design. In this study, we conducted optimization design of the gas spring reaction force with NLPQL.