• Title/Summary/Keyword: Vector map

Search Result 493, Processing Time 0.026 seconds

Design and Implementation of Spatial Data Compression Methods for Improvement of Mobile Transmission Efficiency (모바일 전송 효율 향상을 위한 공간 데이터 압축 기법의 설계 및 구현)

  • Choi Jin-Oh
    • Journal of the Korea Institute of Information and Communication Engineering
    • /
    • v.10 no.7
    • /
    • pp.1253-1258
    • /
    • 2006
  • In the mobile vector map service environments, there are problems like as terminal resource shortage and transmission delay for the characteristics of large spatial data. For the normal mobile vector map services, some techniques are required to overcome the problems. Spatial data compression approach is one of the techniques to reduce the bandwidth and the waiting time at clients. However it also must be considered that the effect on total efficiency caused by the overhead of compression and restoration time. This thesis proposes two spatial data compression techniques. First approach is to get relative coordinates to first coordinate of each object. The other approach is to compute client coordinates before transmission. Through the implementation and experiments, proposed techniques are evaluated the compression effects and efficiency.

Map Building and Localization Based on Wave Algorithm and Kalman Filter

  • Saitov, Dilshat;Choi, Jeong Won;Park, Ju Hyun;Lee, Suk Gyu
    • IEMEK Journal of Embedded Systems and Applications
    • /
    • v.3 no.2
    • /
    • pp.102-108
    • /
    • 2008
  • This paper describes a mapping and localization based on wave algorithm[11] and Kalman filter for effective SLAM. Each robot in a multi robot system has its own task such as building a map for its local position. By combining their data into a shared map, the robot scans actively seek to verify their relative locations. For simultaneous localization the algorithm which is well known as Kalman Filter (KF) is used. For modelling the robot position we wish to know three parameters (x, y coordinates and its orientation) which can be combined into a vector called a state variable vector. The Kalman Filter is a smart way to integrate measurement data into an estimate by recognizing that measurements are noisy and that sometimes they should ignored or have only a small effect on the state estimate. In addition to an estimate of the state variable vector, the algorithm provides an estimate of the state variable vector uncertainty i.e. how confident the estimate is, given the value for the amount of error in it.

  • PDF

Motion Field Estimation Using U-Disparity Map in Vehicle Environment

  • Seo, Seung-Woo;Lee, Gyu-Cheol;Yoo, Ji-Sang
    • Journal of Electrical Engineering and Technology
    • /
    • v.12 no.1
    • /
    • pp.428-435
    • /
    • 2017
  • In this paper, we propose a novel motion field estimation algorithm for which a U-disparity map and forward-and-backward error removal are applied in a vehicular environment. Generally, a motion exists in an image obtained by a camera attached to a vehicle by vehicle movement; however, the obtained motion vector is inaccurate because of the surrounding environmental factors such as the illumination changes and vehicles shaking. It is, therefore, difficult to extract an accurate motion vector, especially on the road surface, due to the similarity of the adjacent-pixel values; therefore, the proposed algorithm first removes the road surface region in the obtained image by using a U-disparity map, and uses then the optical flow that represents the motion vector of the object in the remaining part of the image. The algorithm also uses a forward-backward error-removal technique to improve the motion-vector accuracy and a vehicle's movement is predicted through the application of the RANSAC (RANdom SAmple Consensus) to the previously obtained motion vectors, resulting in the generation of a motion field. Through experiment results, we show that the performance of the proposed algorithm is superior to that of an existing algorithm.

Design of Spatial Data Compression Methods for Mobile Vector Map Services (모바일 벡터 지도 서비스를 위한 공간 데이터 압축 기법의 설계)

  • 최진오
    • Proceedings of the Korean Institute of Information and Commucation Sciences Conference
    • /
    • 2004.05b
    • /
    • pp.358-362
    • /
    • 2004
  • According to the rapid advance of computer and communication techniques, the request of mobile internet services is highly increasing. However, the main obstacles for mobile vector map service environments, are large data volume and narrow wireless bandwidth. Among the many possible solutions, spatial data compression technique may contribute to reduce the load of bandwidth and client response time. This thesis proposes two methods for spatial data compression. The one is relative coordinates transformation method, and the other is client coordinates transformation method. And, this thesis also proposes the system architecture for experiments. The two compression methods could be evaluated the compression effect and the response time.

  • PDF

A Global Path Planning of Mobile Robot Using Modified SOFM (수정된 SOFM을 이용한 이동로봇의 전역 경로계획)

  • Yu Dae-Won;Jeong Se-Mi;Cha Young-Youp
    • Journal of Institute of Control, Robotics and Systems
    • /
    • v.12 no.5
    • /
    • pp.473-479
    • /
    • 2006
  • A global path planning algorithm using modified self-organizing feature map(SOFM) which is a method among a number of neural network is presented. The SOFM uses a randomized small valued initial weight vectors, selects the neuron whose weight vector best matches input as the winning neuron, and trains the weight vectors such that neurons within the activity bubble are move toward the input vector. On the other hand, the modified method in this research uses a predetermined initial weight vectors of the 2-dimensional mesh, gives the systematic input vector whose position best matches obstacles, and trains the weight vectors such that neurons within the activity bubble are move toward the opposite direction of input vector. According to simulation results one can conclude that the modified neural network is useful tool for the global path planning problem of a mobile robot.

Cutting Simulation of Mold & Die via Hybrid Model of DVM and Z-Map (DVM 및 Z-Map 복합모델을 이용한 금형의 모의가공)

  • 신양호;박정환;정연찬
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.20 no.5
    • /
    • pp.47-56
    • /
    • 2003
  • Geometric cutting-simulation and verification play an important role in detecting NC machining errors in mold & die manufacturing and thereby reducing correcting time & cost on the shop floor. Current researches in the area may be categorized into view-based, solid-based, and discrete vector-based methods mainly depending on workpiece models. Each methodology has its own strengths and weaknesses in terms of computing speed, representation accuracy, and its ability of numerical inspection. The paper proposes a hybrid modeling scheme for workpiece representation with z-map model and discrete vector model, which performs 3-axis and 5-axis cutting-simulation via tool swept surface construction by connecting a sequence of silhouette curves.

SURFACES IN $\mathbb{E}^3$ WITH L1-POINTWISE 1-TYPE GAUSS MAP

  • Kim, Young Ho;Turgay, Nurettin Cenk
    • Bulletin of the Korean Mathematical Society
    • /
    • v.50 no.3
    • /
    • pp.935-949
    • /
    • 2013
  • In this paper, we study surfaces in $\mathb{E}^3$ whose Gauss map G satisfies the equation ${\Box}G=f(G+C)$ for a smooth function $f$ and a constant vector C, where ${\Box}$ stands for the Cheng-Yau operator. We focus on surfaces with constant Gaussian curvature, constant mean curvature and constant principal curvature with such a property. We obtain some classification and characterization theorems for these kinds of surfaces. Finally, we give a characterization of surfaces whose Gauss map G satisfies the equation ${\Box}G={\lambda}(G+C)$ for a constant ${\lambda}$ and a constant vector C.

Combining Empirical Feature Map and Conjugate Least Squares Support Vector Machine for Real Time Image Recognition : Research with Jade Solution Company

  • Kim, Byung Joo
    • International Journal of Internet, Broadcasting and Communication
    • /
    • v.9 no.1
    • /
    • pp.9-17
    • /
    • 2017
  • This paper describes a process of developing commercial real time image recognition system with company. In this paper we will make a system that is combining an empirical kernel map method and conjugate least squares support vector machine in order to represent images in a low-dimensional subspace for real time image recognition. In the traditional approach calculating these eigenspace models, known as traditional PCA method, model must capture all the images needed to build the internal representation. Updating of the existing eigenspace is only possible when all the images must be kept in order to update the eigenspace, requiring a lot of storage capability. Proposed method allows discarding the acquired images immediately after the update. By experimental results we can show that empirical kernel map has similar accuracy compare to traditional batch way eigenspace method and more efficient in memory requirement than traditional one. This experimental result shows that proposed model is suitable for commercial real time image recognition system.

A Study on Terrain Construction of Unmanned Aerial Vehicle Simulator Based on Spatial Information (공간정보 기반의 무인비행체 시뮬레이터 지형 구축에 관한 연구)

  • Park, Sang Hyun;Hong, Gi Ho;Won, Jin Hee;Heo, Yong Seok
    • Journal of Korea Multimedia Society
    • /
    • v.22 no.9
    • /
    • pp.1122-1131
    • /
    • 2019
  • This paper covers research on terrain construction for unmanned aerial vehicle simulators using spatial information that was distributed by public institutions. Aerial photography, DEM, vector maps and 3D model data were used in order to create a realistic terrain simulator. A data converting method was suggested while researching, so it was generated to automatically arrange and build city models (vWorld provided) and classification methods so that realistic images could be generated by 3D objects. For example: rivers, forests, roads, fields and so on, were arranged by aerial photographs, vector map (land cover map) and terrain construction based on the tile map used by DEM. In order to verify the terrain data of unmanned aircraft simulators produced by the proposed method, the location accuracy was verified by mounting onto Unreal Engine and checked location accuracy.

Analyses of Computation Time on Snakes and Gradient Vector Flow

  • Kwak, Young-Tae
    • Journal of the Korean Data and Information Science Society
    • /
    • v.18 no.2
    • /
    • pp.439-445
    • /
    • 2007
  • GVF can solve two difficulties with Snakes that are on setting initial contour and have a hard time processing into boundary concavities. But GVF takes much longer computation time than the existing Snakes because of their edge map and partial derivatives. Therefore this paper analyzed the computation time between GVF and Snakes. As a simulation result, both algorithms took almost similar computation time in simple image. In real images, GVF took about two times computation than Snakes.

  • PDF