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Abstract 

This paper describes a process of developing commercial real time image recognition system with 

company. In this paper we will make a system that is combining an empirical kernel map method and 

conjugate least squares support vector machine in order to represent images in a low-dimensional subspace 

for real time image recognition. In the traditional approach calculating these eigenspace models, known as 

traditional PCA method, model must capture all the images needed to build the internal representation. 

Updating of the existing eigenspace is only possible when all the images must be kept in order to update the 

eigenspace, requiring a lot of storage capability. Proposed method allows discarding the acquired images 

immediately after the update. By experimental results we can show that empirical kernel map has similar 

accuracy compare to traditional batch way eigenspace method and more efficient in memory requirement 

than traditional one. This experimental result shows that proposed model is suitable for commercial real time 

image recognition system.  
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1. Introduction 

Unsupervised surveillance gadgets aided by hi-tech visual information retrieval and indexing systems use 

computerized face recognition techniques that can recognizes faces from an image. There are two main 

approaches for face recognition [1]. The first approach is the feature based matching approach using the 

relationship between facial features[2]. The second approach is the template matching approach using the 

holistic features of the face images. Template based techniques often follow the subspace method called 

eigenface originated by Turk and Pentland[3]. This technique is based on the Karhunen-Loeve 

transformation, which is also referred as PCA. It has gained great success and become a de facto standard 

and a common performance benchmark in face recognition. One of the attractive characteristics of PCA is 
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that a high dimension vector can be represented by a small number of orthogonal basis vectors. The 

conventional methods of PCA such as singular value decomposion(SVD) and eigen-decomposition, perform 

in batch-mode with a computational complexity of O (
3m ) when m is the minimum value between the data 

dimension and the number of training examples. Undoubtedly these methods are computationally expensive 

when dealing with large scale problems where both the dimension and the number of training examples are 

large. To address this problem, many researchers have been working on incremental algorithms. Among them 

Chandrasekaran et al presented an incremental eigenspace update method using SVD[4]. Hall et al derived 

an eigen-decomposition based incremental algorithm and later extended their work to merge and split 

eigenspace models[5]. Another problem of PCA is that it only defines a linear projection of the data, the 

scope of its application is necessarily somewhat limited. It has been shown that most of the data in the real 

world are inherently non-symmetric and therefore contain higher-order correlation in-formation that could be 

useful[6]. PCA is incapable of representing such data. For such cases, nonlinear transforms is necessary. 

Recently kernel trick has been applied to PCA and is based on a formulation of PCA in terms of the dot 

product matrix instead of the covariance matrix[7]. Kernel PCA(KPCA), however, requires storing and 

finding the eigenvectors of a NN   kernel matrix where N is a number of patterns. It is infeasible method 

for when N is large. This fact has motivated the development of empirical kernel method which does not 

store the kernel matrix. In this paper we propose a method that allows for incremental eigenspace update 

method by incremental kernel PCA for vision learning and recognition. Paper is organized as follows. In 

Section 2 we will briefly explain the incremental PCA method. In Section 3 KPCA is introduced and to make 

KPCA incrementally, empirical kernel map method is explained. Experimental results to evaluate the 

performance of proposed method is shown in Section 4. Discussion of proposed method and future work is 

described in Section 5. 

 

2. Incremental PCA 

In this section, we will give a brief introduction to the method of incremental PCA algorithm which 

overcomes the computational complexity of standard PCA. Before continuing, a note on notation is in order. 

Vectors are columns, and the size of a vector, or matrix, where it is important, is denoted with subscripts. 

Particular column vectors within a matrix are denoted with a superscript, while a superscript on a vector 

denotes a particular observation from a set of observations, so we treat observations as column vectors of a 

matrix. As an example, 
i

mnA is the ith column vector in a nm  matrix. We denote a column extension to a matrix using square 

brackets. Thus ][ bAmn  is an(m × (n + 1)) matrix, with vector b appended to mnA  as a last column. 

To explain the incremental PCA, we assume that we have already built a set of eigenvectors 

],,1,[ kjuU j   after having trained the input images Nixi ,,,  . The corresponding eigenvalues are 

Λ and   is the mean of input image. Incremental building of eigenspace requires updating these 

eigenspace to take into account of a new input image. Here we give a brief summarization of the method 

which is described in [5]. First, we update the mean: 

)(
1

1
1

'




 NxxN
N

x                                 (1) 

We then update the set of eigenvectors to reflect the new input image and to apply a rotational transformation 
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to U . For doing this, it is necessary to compute the orthogonal residual vector 11 )( 



 NN xxUah  

where 

1Na  is principal component and normalize it to obtain 
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otherwise. We obtain the new matrix of eigenvectors 
'U  by appending 1Nh  to the eigenvectors U and 

rotating them : 

RhUU N ],[ 1

'

                                     (2) 

where R∈ )1()1(  kk  is a rotation matrix. R is the solution of the eigenspace of the following form: 

' RDR                                        (3) 

where 
' is a diagonal matrix of new eigenvalues. We compose D ∈ )1()1(  kk as: 
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where )( 11 xxh N

T

N    and )( 1 xxUa N

T   . Though there are other ways to construct matrix D [4][5], 

the only method ,however, described in [6] allows for the updating of mean. 

 

2.1  Updating Image Representations 

The incremental PCA represents the input image with principal components )(Nia  and it can be 

approximated as follows: 


 xUax NiNi )()(                                   (5) 

To update the principal components )(Nia  for a new image 1Nx , computing an auxiliary vector η is 

necessary. η is calculated as follows: 

)(
'

1 xxhU
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 then the computation of all principal components is 
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The transformations described above yield a model that represents the input images with the same accuracy 

as the previous one, therefore we can now discard the old subspace and the coefficients that represent the 

image in it. 1Nx  is represented accurately as well, so we can safely discard it. The representation of all N + 

1 images are possible because the subspace is spanned by k +1eigenvector. Due to the increase of the 

dimensionality by one, however, more storage is required to represent the data. If we try to keep a k-

dimensional eigenspace, we lose a certain amount of information. In order to balance the storage 
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requirements with the level of accuracy, it is needed for us to set the criterion on retaining the number of 

eigenvectors. There is no explicit guideline for retaining a number of eigenvectors. 

In this paper we set our criterion on adding an eigenvector as  7.01
' K  where   is a mean of the λ. 

Based on this rule, we decide whether adding 
'

1Ku  or not. 

 

3. Empirical Feature Map 

A prerequisite of the incremental eigenspace update method is that it has to be applied on the data set. 

Furthermore incremental PCA builds the subspace of eigenvectors incrementally, it is restricted to apply the 

linear data. But in the case of KPCA this data set )( Nx  is high dimensional and most of the time can not 

even be calculated explicit ly. For the case of nonlinear data set, applying feature mapping function method 

to incremental PCA may be one of the solutions. This is performed by so-called kernel-trick , which means 

an implicit embedding to an infinite dimensional Hilbert space[9](i.e. feature space) F . 
 

K (x, y)= Φ(x) · Φ(y )                                 (8) 

Where K is a given kernel function in an input space. When K is semi positive definite, the existence of Φ is 

proven[7]. Most of the case, however, the mapping Φ is high-dimensional and cannot be obtained explicitly. 

The vector in the feature space is not observable and only the inner product between vectors can be observed 

via a kernel function. However, for a given data set, it is possible to approximate Φ by empirical kernel map 

proposed by Scholkopf[10] and Tsuda[11] which is defined as 
Nd

N  :  

T

NN xxxxx )]()(,),()([)( 1   T

N xxKxxK )],(,),,([ 1               (9) 
 

A performance evaluation of empirical kernel map was shown by Tsuda. He shows that support vector 

machine with an empirical kernel map is identical with the conventional kernel map[12]. The empirical 

kernel map )( NN x , however, do not form an orthonormal basis in 
N , the dot product in this space is 

not the ordinary dot product. In the case of KPCA , however, we can be ignored as the following argument. 

The idea is that we have to perform linear PCA on the )( NN x  from the empirical kernel map and thus 

diagonalize its covariance matrix. Let the N × N matrix  )](,),(),([ 21 NNNN xxx   , then from 

equation (9) and definition of the kernel matrix we can construct Ψ = NK. The covariance matrix of the 

empirically mapped data is: 

21
NKNKK

N
C TT                         (10) 

In case of empirical kernel map, we diagonalize 
2NK instead of K as in KPCA. Mika shows that the two 

matrices have the same eigenvectors }{ ku  [12]. The eigenvalues }{ k  of K are related to the eigenvalues 

}{ kK of 
2NK by 

N

Kk
k                                       (11) 

 

and as before we can normalize the eigenvectors }{ kv  for the covariance matrix C of the data by dividing 
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each }{ ku  by Nk . Instead of actually diagonalize the covariance matrix  C , the incremental KPCA 

is applied directly on the mapped data Ψ = NK. This makes it easy for us to adapt the incremental eigenspace 

update method to KPCA such that it is also correctly takes into account the centering of the mapped data in 

an incremental way. By this result, we only need to apply the empirical map to one data point at a time and 

do not need to store the N × N kernel matrix. 

 

4. Experiment 

To evaluate the performance of accuracy on eiegnspace update for incremental data we take nonlinear data. 

The disadvantage of incremental method is their accuracy compared to batch method even though it has the 

advantage of memory efficiency. So we shall apply proposed method to a simple toy data which will show 

the accuracy and memory efficiency of incremental KPCA compared to APEX model proposed by Kung[13] 

and batch KPCA. Next we will use images from the KinFaceW-I data).  

 

4.1  Toy Data 

To evaluate the eigenspace update accuracy and memory efficiency of incremental KPCA compared to 

APEX and KPCA we take nonlinear data used by Scholkoff[8]. Totally 41 training data set is generated by: 
 

 :2.02  xy  from  ]1,1[),1,0( xN                    (12) 
 

First we compare feature extraction ability of incremental KPCA to APEX model. APEX model is famous 

principal component extractor based on Hebbian learning rule. Applying toy data to incremental KPCA we 

finally obtain 2 eigenvectors. To evaluate the performance of two methods on same condition, we set 2 

output nodes to standard APEX model. 

In table 1 we experimented APEX method on various conditions. Generally neural network based learning 

model has difficulty in determining the parameters; for example learning rate, initial weight value and 

optimal hidden layer node. This makes us to conduct experiments on various conditions.   is norm of 

weight vector in APEX and  =1 means that it converges stable minimum. cosθ is angle between 

eigenvector of KPCA and APEX, incremental  

 

Table 1. Performance evaluation of incremental KPCA(IKPCA) and APEX 

Method Iteration Learning Rate 1  2
 1cos

 2cos
 

MSE 

APEX 50 0.01 0.6827 1.4346 0.9993 0.7084 14.8589 

APEX 50 0.05 
   

Do not converge  

APEX 500 0.01 1.0068 1.0014 0.9995 0.9970 4.4403 

APEX 500 0.05 1.0152 1.0470 0.9861 0.9432 4.6340 

APEX 1000 0.01 1.0068 1.0014 0.9995 0.9970 4.4403 

APEX 1000 0.05 1.0152 1.0470 0.9861 0.9432 4.6340 

IKPCA 100 
 

1 1 1 1 0.0223 
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Figure 1. Reconstruction error change by re-learning in incremental KPCA 
 

KPCA respectively. cosθ of eigenvector can be a factor of evaluating accuracy how much incremental KPCA 

and APEX is close to accuracy of KPCA. Table 1 nicely shows the two advantages of incremental KPCA 

compared to APEX: first, performance of incremental KPCA is better than APEX; second, the performance 

of incremental KPCA is easily improved by re-learning. Another factor of evaluating accuracy is 

reconstruction error. Reconstruction error is defined as the squared distance between the Ψ image of Nx and 

reconstruction when projected onto the first principal components. 

2
)()( NlN xPx                                 (13) 

In here lP is the first principal component. The MSE(Mean Square Error) value of reconstruction error in 

APEX is 4.4403 whereas incremental KPCA is 0.0223. This means that the accuracy of incremental KPCA is 

superior to standard APEX and similar to that of batch KPCA. Figure 1 shows the MSE value change for 

reconstruction error by re-learning in incremental KPCA. Re-learning is similar meaning of epoch in neural 

network learning. We can see that the performance of incremental KPCA is easily improved by relearning. 

Above results of simple toy problem indicate that incremental KPCA is comparable to the batch way KPCA 

and superior in terms of accuracy. Next we will compare the memory efficiency of incremental KPCA 

compared to KPCA. In these experiments, incremental KPCA only needs D matrix and R matrix whereas 

KPCA needs kernel matrix. Table 2 shows the memory requirement of each method. Memory requirement of 

standard KPCA is 93 times more than incremental KPCA. We can see that incremental KPCA is more 

efficient in memory requirement than KPCA and has similar ability of eigenspace update accuracy.  

 

Table 2. Memory efficiency of incremental KPCA compared to KPCA on toy data 

 
KPCA IKPCA 

Kernel matrix 14 X 41 None 

R matrix None 3 X 3 

D matrix None 3 X 3 

Efficiency ratio 93.3889 1 

 

By this simple toy problem we can show that incremental KPCA has similar accuracy compare to KPCA and 

more efficient in memory requirement than KPCA. 
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4.2  LS-SVM for Large Size Data 

Support vector machines(SVM) developed by Vapnik[7] and it is a powerful methodology for solving 

problems in nonlinear classification. Originally, it has been introduced within the context of statistical 

learning theory and structural risk minimization. In the methods one solves convex optimization problems, 

typically by quadratic programming(QP). Solving QP problem requires complicated computational effort and 

need more memory requirement. LS-SVM[8] overcomes this problem by solving a set of linear equations in 

the problem formulation. LS-SVM method is computationally attractive and easier to extend than SVM. But 

traditional batch way LS-SVM requires storing (N+1) × (N+1) matrix where N is a number of patterns. It is 

infeasible method when dealing with image data because its size is big. For image data sets the use of 

iterative methods is recommended. In principle, various methods can be used at this point including 

SOR(Successive Over-Relaxation), CG(Conjugate Gradient), GMRES(Generalized Minimal Residual) etc. 

However, not all of these iterative methods can be applied to any kind of linear system. For example, in order 

to apply CG the matrix should be positive definite. Due to the presence of the b bias term in the LS-SVM 

model the resulting matrix is not positive definite. So before we can apply such methods we have to 

transform the linear system into a positive definite system. The LS-SVM KKT system is of the form  

                                    [0 YT

Y H
] [

ξ1

ξ2
] = [

d1

d2
]                                (14) 

 

more specifically with H = Ω+ I/γ, ξ1 = b, ξ2 = α, d1 =  0, d2 =  Iv. This can be transformed into 

[
s 0
0 H

] [
ξ1

ξ2 +  H−1yξ1 
] = [

−d1 +  yTH−1d2

d2
]                     (15) 

 

with S =  yTH−1y > 0 ( H =  H−T>0 ). Because s is positive and H positive definite the overall matrix is 

positive definite. This form is very suitable because different kinds of iterative methods can be applied to 

problems involving positive definite matrices. This leads to the LS-SVM classifier with conjugate gradient 

algorithm LS-SVM for big data is as follows. 
 

1. Solve η,ν from Hη = Y and 

Hν = 1v 

2. Compute s = Y
T
 η 

3. Find solution  

b = η
T
1v/s 

α = ν - ηb 

 

 

4.3  The KinFaceW-I Face Data Set 

To validate the above results on a widely used pattern recognition benchmark database, we use the 

KinFaceW-I data set[9]. There are 156, 134, 116, and 127 pairs of kinship images for these four relations. 

And there are four folders: father-daughter, father-son, mother-daughter and mother-son, representing four 

different kinship relations: Father-Daughter (FD), Father-Son (FS), Mother-Daughter (MD), and Mother-Son 

(MS). Among them we use 156 Father-Daughter images. 70% of image is used for training and rest of 30% 

is used for testing. Figure 2 shows the sample images of training data. A RBF kernel has been taken with 

and are obtained by 10-fold cross-validation. 
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Table 3. Training and generalization result on KinFaceW-I Data 

 
Training Generalization Eigenvalue update criterion 

Standard LS-SVM 100% 95.06% none 

Proposed method 100% 94.06%  7.0'
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 2. Example of the KinFaceW-I Dataset 

 

The results on the the KinFaceW-I data are given in Table 3. For this widely used pattern recognition 

problem, we can see that proposed classification system classifies well on the KinFaceW-I data set. 

 

4.4  Comparison with SVM 

Recently SVM has been a powerful methodology for solving problems in nonlinear classification. To 

evaluate the classification accuracy of the proposed system it is desirable to compare with SVM. Generally a 

disadvantage of the incremental method is its accuracy compared to the batch method even though it has the 

advantage of memory efficiency. According to Table 4 and Table 5 we can see that the proposed method has 

better classification performance compared to batch SVM. Through this result we can show that the proposed 

classifier has remarkable classification accuracy, although it is worked in an incremental way. 
 

Table 4. Performance comparison of proposed method and SVM using all features 

 
Training Generalization Eigenvalue update criterion 

Standard SVM 100% 95.01% none 

Proposed method 100% 95.03%  7.0'
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Table 5. Performance comparison of proposed method and SVM using extracted features 

 
Training Generalization Eigenvalue update criterion 

Standard SVM 100% 94.02% none 

Proposed method 100% 94.06%  7.0'
 

 
5. Conclusion and Remarks 

A conjugate based LS-SVM which combining empirical kernel map was presented for dealing with real 

time image recognition. Such classifier has following advantages. Proposed image recognition system is 

more efficient in memory requirement than batch LS-SVM. In batch LS-SVM the (N+1) × (N+1) matrix has 

to be stored, while for our proposed method does not. It is very useful when dealing with large size data. 

Experimental results on huge data from the KinFaceW-I data, proposed method shows lead to good 

performance. By this result we will make a commercial image recognition system with Jade Solution 

Company. 
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