• Title/Summary/Keyword: Various conditions

Search Result 18,611, Processing Time 0.048 seconds

An Exercise Rehabilitation Field Revitalization Plan for Promoting Elderly Sport for All (노인생활체육 진흥을 위한 운동재활분야 활성화 방안)

  • Cho, Kyoung-Hwan
    • Journal of Korea Entertainment Industry Association
    • /
    • v.14 no.4
    • /
    • pp.305-319
    • /
    • 2020
  • A The purpose of this study was to determine the present state of the exercise rehabilitation field, promote elderly sport for all, and present a revitalization program for higher quality of life for the elderly in the coming era of the Fourth Industrial Revolution and aged society. Literature review was performed to analyze the actual conditions of the activities for elderly sport for all and the relevant field of exercise rehabilitation, analyze the elderly health and welfare and elderly sport for all programs, and present a plan for revitalizing the field of exercise rehabilitation to promote elderly sport for all. First, it is necessary to reinforce the awareness and promotion of the need and importance of exercise rehabilitation in inducing seniors to participate in sport for all. Second, it is necessary to make it compulsory to place sport leaders for seniors at such places as elderly leisure and welfare centers and promote expertise in managing elderly health guidance efficiently through cooperation with welfare workers. Third, it is necessary to make it compulsory to take exercise rehabilitation and similar subjects in the curriculums of sport for all, elderly sport welfare, and silver welfare sport as well as the subject of volunteering activities at such places as elderly leisure and welfare centers with the aim of giving opportunities for career choice. Fourth, it is necessary to develop characterized exercise rehabilitation programs at senior welfare centers, community centers for the elderly, and elderly classes and employ experts equipped with exercise event and exercise rehabilitation capabilities as itinerant lecturers to contribute to the government's job creation policies through cooperation between the Ministry of Culture, Sports, and Tourism (MOCST) and the Ministry of Health and Welfare (MOHW). Fifth, it is necessary to make a greater investment in research and development required for elderly sport for all. Sixth, it is necessary to develop and distribute various exercise rehabilitation treatment videos and guidelines that seniors can use for themselves. This is associated with the fifth one; in particular, it is urgent to devise measures against Coronavirus 19. Seventh, it is necessary to reduce inefficiency and budget waste caused by overlapped tasks by establishing a new elderly sports promotion organization through adjustment by MOCST and MOHW; it is also necessary to increase the functions of organization establishment with the aim of reinforcing the education area, which involves post-retirement health care, exercise rehabilitation, safety accident prevention, and virus.

Suggestion of Implications for Korean Textiles and Clothing Apprenticeship Education Through the Analysis of Vocational Education in Korea and Germany (한국과 독일 직업 교육 분석을 통한 한국 섬유·의류 도제교육에 관한 시사점 제안)

  • Lee, Ji-Soo
    • Journal of Korean Home Economics Education Association
    • /
    • v.33 no.4
    • /
    • pp.49-64
    • /
    • 2021
  • Apprenticeship education in Korea started approximately in 2005, and is divided into government-led apprenticeship education and Gyeonggi-do-led apprenticeship education. Apprenticeship education for textile and clothing-related majors in Korea is a very different process compared to Germany, where the country, companies, and schools have cooperated with each other with a long tradition, and there are many points to be supplemented. In order to explore the literature on apprenticeship education in Germany and Korea, and to understand the phenomena or actual conditions that have not been shown in the literature, interviews were conducted with two German professors living in South Korea. As a result of the analysis, Germany's long tradition and positive perception of vocational education are the basis for the establishment of apprenticeship education, and it is positioned as a system of education process. Various associations related to apprenticeship education make systematic training manuals, and then distribute certificates to trainees who have completed these courses. Therefore, companies promote the stability of the job market by educating local talents through apprenticeship training to nurture industrial manpower. Currently, in Korea's apprenticeship education, a series of procedures for developing educational courses such as company discovery and job analysis for each company are entirely entrusted to vocational high schools. Therefore, public confidence and solidity in apprenticeship education were found to be insignificant. This study has limitations in that it cannot confirm a phenomenon that has not been shown in the literature review, there is insufficient research on German literature, and the number of samples interviewed is small. However, if, based on the results of this study, an association dedicated to apprenticeship education is created in Korea and a systematic curriculum is developed, it will be able to contribute to establishing the stability of the textile and apparel labor market in the future.

Optimization for Removal of Nitrogen Using Non-consumable Anode Electrodes (비소모성 Anode(산화전극)을 이용한 질소 제거 최적화)

  • Hyunsang, Kim;Younghee, Kim
    • Clean Technology
    • /
    • v.28 no.4
    • /
    • pp.309-315
    • /
    • 2022
  • Research was conducted to derive the optimal operation conditions and the optimal cathode for using a DSA electrode as an anode to minimize electrode consumption during the removal of nitrogen from wastewater by the electro-chemical method. Of the various electrodes tested as cathodes, brass was determined to be the optimal electrode. It had the highest NO3-N removal rate and the lowest concentration of residual NH3-N, a by-product when Cl is present in the solution. Investigating the effect of current density found that when the initial concentration of NO3-N was 50 mg L-1, the optimal current density was 15 mA cm-2. In addition, current densities above 15 mA cm-2 did not significantly affect the NO3-N removal rate. The effect of electrolytes on removing NO3-N and minimizing NH3-N was investigated by using Na2SO4 and NaCl as electrolytes and varying the reaction times. When Na2SO4 and NaCl are mixed at a ratio of 1.0 g L-1 to 0.5 g L-1 and reacted for 90 min at a current density of 15 mA cm-2 and an initial NO3-N concentration of 50 mg L-1, the removal rate of NO3-N was about 48% and there was no residual NH3-N. On the other hand, when using only 1.5 g L-1 of NaCl as an electrolyte, the removal rate of NO3-N was the highest at about 55% and there was no residual NH3-N.

On Vortex Reduction Characteristics of Pump Sump Circulating Water Intake Basin of Power Plant Using Hydraulic Experiment (수리실험을 이용한 발전소의 순환수 취수부 흡입수조의 와류저감에 관한 연구)

  • Eom, Junghyun;Lee, Du Han;Kim, Hung Soo
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • v.42 no.6
    • /
    • pp.815-824
    • /
    • 2022
  • Among the main facilities of the power plant, the circulating water used for cooling the power generation system is supplied through the Circulation Water Intake Basin (CWIB). The vortexes of various types generated in the Pump Sump (PS) of CWIB adversely affect the Circulation Water Pump (CWP) and pipelines. In particular, the free surface vortex accompanied by air intake brings about vibration, noise, cavitation etc. and these are the causes of degradation of CWP performance, damage to pipelines. Then power generation is interrupted by the causes. Therefore, it is necessary to investigate the hydraulic characteristics of CWIB through the hydraulic model experiment and apply an appropriate Anti Vortex Device (AVD) that can control the vortex to enable smooth operation of the power plant. In general, free surface vortex is controlled by Curtain Wall (CW) and the submerged vortex is by the anti vortex device of the curtain wall. The detailed specifications are described in the American National Standard for Pump Intake Design. In this study, the circulating water intake part of the Tripoli West 4×350 MW power plant in Libya was targeted, the actual operating conditions were applied, and the vortex reduction effect of the anti vortex device generated in the suction tank among the circulating water intake part was analyzed through a hydraulic model experiment. In addition, a floor splitter was basically applied to control the submerged vortex, and a new type of column curtain wall was additionally applied to control the vortex generated on the free surface to confirm the effect. As a result of analyzing the hydraulic characteristics by additionally applying the newly developed Column Curtain Wall (CCW) to the existing curtain wall, we have found that the vortex was controlled by forming a uniform flow. In addition, the vortex angle generated in the circulating water pump pipeline was 5° or less, which is the design standard of ANSI/HI 9.8, confirming the stability of the flow.

Productivity and Cost of Mechanized Felling and Processing Operations Performed with an Excavator-based Stroke Harvester by Tree Species (수종에 따른 스트로크 하베스터의 벌도⋅조재작업 생산성 및 비용)

  • Yun-Sung, Choi;Min-Jae, Cho;Ho-Seong, Mun;Jae-Heun, Oh
    • Journal of Korean Society of Forest Science
    • /
    • v.111 no.4
    • /
    • pp.567-582
    • /
    • 2022
  • Chainsaw use for motor-manual timber harvesting in South Korea is associated with worker safety issues. However, forestry operations such as timber harvesting have already been mechanized to reduce hazards to workers and increase productivity. This study analyzed the productivities and costs of felling and processing, felling and processing using an excavator-based stroke harvester for Pinus rigida and Quercus mongolica stands. To efficiently operate the stroke harvester, we developed a regression equation to estimate the productivities of felling and processing, felling, and processing operations,and we conducted sensitivity analysis of the operation costs using DBH and machine utilization. The felling and processing productivity was 6.53 and 4.02 m3/SMH for P. rigida a nd Q. mongolica, respectively, and the cost was 17,983 and 29,210 won/m3, respectively. The felling productivity for P. rigida a nd Q. mongolica wa s 40.9 and 23.0 m3/SMH, respectively, and the cost was 2,667 and 4,743 won/m3, respectively. The processing productivity for P. rigida and Q. mongolica was 8.25 and 7.75 m3/SMH, respectively, and the cost was 15,296 and 16,283 won/m3, respectively. In the developed regression equation, the DBH, traveling distance, and number of cuttings were found to be important factors (p<0.05). Therefore, it is necessary to construct a DB considering the various conditions and species associated with harvester operations, and further research is needed to increase the accuracy of predicting operation productivity and costs.

Priority Analysis of Cause Factors of Safety Valve Failure Mode Using Analytical Hierarchy Process (AHP를 활용한 안전밸브(PSV) 고장모드의 Cause Factors 우선순위 분석)

  • Kim, Myung Chul;Lee, Mi Jeong;Lee, Dong Geon;Baek, Jong-Bae
    • Korean Chemical Engineering Research
    • /
    • v.60 no.3
    • /
    • pp.347-355
    • /
    • 2022
  • The safety valve (PSV) is a safety device that automatically releases a spring when the pressure generated by various causes reaches the set pressure, and is restored to a normal state when the pressure falls below a certain level. Periodic inspection and monitoring of safety valves are essential so that they can operate normally in abnormal conditions such as pressure rise. However, as the current safety inspection is performed only at a set period, it is difficult to ensure the safety of normal operation. Therefore, evaluation items were developed by finding failure modes and causative factors of safety valves required for safety management. In addition, it is intended to provide decision-making information for securing safety by deriving the priority of items. To this end, a Delphi survey was conducted three times to derive evaluation factors that were judged to be important in relation to the Failure Mode Cause Factor (FMCFs) of the safety valve (PSV) targeting 15 experts. As a result, 6 failure modes of the safety valve and 22 evaluation factors of its sub-factors were selected. In order to analyze the priorities of the evaluation factors selected in this way, the hierarchical structure was schematized, and the hierarchical decision-making method (AHP) was applied to the priority calculation. As a result of the analysis, the failure mode priorities of FMCFs were 'Leakage' (0.226), 'Fail to open' (0.201), 'Fail to relieve req'd capacity' (0.152), 'Open above set pressure' (0.149), 'Spuriously' 'open' (0.146) and 'Stuck open' (0.127) were confirmed in the order. The lower priority of FMCFs is 'PSV component rupture' (0.109), 'Fail to PSV size calculation' (0.068), 'PSV Spring aging' (0.065), 'Erratic opening' (0.059), 'Damage caused by improper installation and handling' (0.058), 'Fail to spring' (0.053), etc. were checked in the order. It is expected that through efficient management of FMCFs that have been prioritized, it will be possible to identify vulnerabilities of safety valves and contribute to improving safety.

Effects of Coir Substrate Application and Substrate Volume on the Growth and Yields of Strawberry in a Hydroponically Cultured System (딸기 수경재배에 코이어 배지 적용과 근권부 배지 용량이 생육 및 수확량에 미치는 영향)

  • Hwang, Jeongsu;Yun, Sungwook;Kwon, Jinkyung;Park, Minjung;Lee, Dongsoo;Lee, Heeju;Lee, Siyoung;Lee, Sanggyu;Hong, Youngsin
    • Journal of Bio-Environment Control
    • /
    • v.31 no.3
    • /
    • pp.163-169
    • /
    • 2022
  • This study was conducted to examine an alternative cultivating method that uses coir substrates in a hydroponically cultured system. Three treatment conditions were applied with one-layer substrate (10 cm height) with a coir chip and dust ratio of 5:5 (Treatment A), two-layer coir substrate (20 cm height) with a coir chip and dust ratio of 5:5 (Treatment B), one-layer coir substrate (15 cm height) with a coir chip and dust ratio of 7:3 (Treatment C). The control condition was a plastic container filled with a coir chip and dust ratio of 5:5. Various criteria were measured and compared between the treatments and the control. The yield of strawberry was smaller in the control than in the treatments. No significant difference in growth characteristic was found in the height treatments of the coir substrates. The net photosynthetic rate of the treatments was 14.68-15.76 µmol CO2·m-2·s-1. This does not show a statistically significant difference. The root activity was better in treatment B and C than in treatment A and the control. The length and width of leaves were measured as 4.04-4.13 cm and 3.26-3.34 cm. These results are not statistically significant. The leaf length and width ratio was 1.27 in the control and 1.24 in the treatments. The findings show that no statistically significant benefit was found when utilizing coir substrates with different height treatments in the hydroponic culture system. However, the harvested fruit per plant weights 72.38 g in treatment A and 48.69 g in treatment C. The number of harvested fruit was least in treatment C in which a coir chip and dust ratio of 7:3 was applied. Therefore, further research is needed to examine how the chip and dust ratio in coir substrate affects growth characteristics.

The Economic Cycle and Contributing Factors to the Operating Profit Ratio of Korean Liner Shipping (경기순환과 우리나라 정기선 해운의 영업이익률 변동 요인)

  • Mok, Ick-soo;Ryoo, Dong-keun
    • Journal of Navigation and Port Research
    • /
    • v.46 no.4
    • /
    • pp.375-384
    • /
    • 2022
  • The shipping industry is cyclically impacted by complex variables such as various economic indicators, social events, and supply and demand. The purpose of this study was to analyze the operating profit of 13 Korean liner companies over 30 years, including the financial crisis of the late 1990s, the global financial crisis of the late 2000s, and the COVID-19 global pandemic. This study was conducted to also identify factors that impacted the profit ratio of Korea's liner shipping companies according to economic conditions. It was divided into ocean-going and short-sea shipping, reflecting the characteristics of liner shipping companies, and was analyzed by hierarchical multiple regression analysis. The time series data are based on the Korean International Financial Reporting Standards (K-IFRS) and comprise seaborne trade volume, fleet evolution, and macroeconomic indicators. The outliers representing the economic downturn due to social events were separately analyzed. As a result of the analysis, the China Container Freight Index (CCFI) positively impacted ocean-going as well as short-sea liner shipping companies. However, the Korean container shipping volume only impacted ocean-going liners positively. Additionally, world and Korea's GDP, world seaborne trade volume, and fuel price are factored in the operating profit of short sea liner shipping. Also, the GDP growth rate of China, exchange rate, and interest rate did not significantly impact both groups. Notably, the operating profitability of Korea's liner shipping shows an exceptionally high rate during the recessions of 1998 and 2020. It is paradoxical, and not correlated with the classical economic indicators. Unlike other studies, this paper focused on the operating profit before financial expenses, considering the complexity as well as difficulty in forecasting the shipping cycle, and rendered conclusions using relatively long-term empirical analysis, including three economic shocks.

Development of Summer Leaf Vegetable Crop Energy Model for Rooftop Greenhouse (옥상온실에서의 여름철 엽채류 작물에너지 교환 모델 개발)

  • Cho, Jeong-Hwa;Lee, In-Bok;Lee, Sang-Yeon;Kim, Jun-Gyu;Decano, Cristina;Choi, Young-Bae;Lee, Min-Hyung;Jeong, Hyo-Hyeog;Jeong, Deuk-Young
    • Journal of Bio-Environment Control
    • /
    • v.31 no.3
    • /
    • pp.246-254
    • /
    • 2022
  • Domestic facility agriculture grows rapidly, such as modernization and large-scale. And the production scale increases significantly compared to the area, accounting for about 60% of the total agricultural production. Greenhouses require energy input to create an appropriate environment for stable mass production throughout the year, but the energy load per unit area is large because of low insulation properties. Through the rooftop greenhouse, one of the types of urban agriculture, energy that is not discarded or utilized in the building can be used in the rooftop greenhouse. And the cooling and heating load of the building can be reduced through optimal greenhouse operation. Dynamic energy analysis for various environmental conditions should be preceded for efficient operation of rooftop greenhouses, and about 40% of the solar energy introduced in the greenhouse is energy exchange for crops, so it should be considered essential. A major analysis is needed for each sensible heat and latent heat load by leaf surface temperature and evapotranspiration, dominant in energy flow. Therefore, an experiment was conducted in a rooftop greenhouse located at the Korea Institute of Machinery and Materials to analyze the energy exchange according to the growth stage of crops. A micro-meteorological and nutrient solution environment and growth survey were conducted around the crops. Finally, a regression model of leaf temperature and evapotranspiration according to the growth stage of leafy vegetables was developed, and using this, the dynamic energy model of the rooftop greenhouse considering heat transfer between crops and the surrounding air can be analyzed.

Analysis of Soil Changes in Vegetable LID Facilities (식생형 LID 시설의 내부 토양 변화 분석)

  • Lee, Seungjae;Yoon, Yeo-jin
    • Journal of Wetlands Research
    • /
    • v.24 no.3
    • /
    • pp.204-212
    • /
    • 2022
  • The LID technique began to be applied in Korea after 2009, and LID facilities are installed and operated for rainwater management in business districts such as the Ministry of Environment, the Ministry of Land, Infrastructure and Transport, and LH Corporation, public institutions, commercial land, housing, parks, and schools. However, looking at domestic cases, the application cases and operation periods are insufficient compared to those outside the country, so appropriate design standards and measures for operation and maintenance are insufficient. In particular, LID facilities constructed using LID techniques need to maintain the environment inside LID facilities because hydrological and environmental effects are expressed by material circulation and energy flow. The LID facility is designed with the treatment capacity planned for the water circulation target, and the proper maintenance, vegetation, and soil conditions are periodically identified, and the efficiency is maintained as much as possible. In other words, the soil created in LID is a very important design element because LID facilities are expected to have effects such as water pollution reduction, flood reduction, water resource acquisition, and temperature reduction while increasing water storage and penetration capacity through water circulation construction. In order to maintain and manage the functions of LID facilities accurately, the current state of the facilities and the cycle of replacement and maintenance should be accurately known through various quantitative data such as soil contamination, snow removal effects, and vegetation criteria. This study was conducted to investigate the current status of LID facilities installed in Korea from 2009 to 2020, and analyze soil changes through the continuity and current status of LID facilities applied over the past 10 years after collecting soil samples from the soil layer. Through analysis of Saturn, organic matter, hardness, water contents, pH, electrical conductivity, and salt, some vegetation-type LID facilities more than 5 to 7 years after construction showed results corresponding to the lower grade of landscape design. Facilities below the lower level can be recognized as a point of time when maintenance is necessary in a state that may cause problems in soil permeability and vegetation growth. Accordingly, it was found that LID facilities should be managed through soil replacement and replacement.