DOI QR코드

DOI QR Code

Development of Summer Leaf Vegetable Crop Energy Model for Rooftop Greenhouse

옥상온실에서의 여름철 엽채류 작물에너지 교환 모델 개발

  • Cho, Jeong-Hwa (Department of Rural Systems Engineering, College of Agriculture and Life Sciences, Seoul National University) ;
  • Lee, In-Bok (Department of Rural Systems Engineering, College of Agriculture and Life Sciences, Seoul National University) ;
  • Lee, Sang-Yeon (Department of Rural Systems Engineering, College of Agriculture and Life Sciences, Seoul National University) ;
  • Kim, Jun-Gyu (Department of Rural Systems Engineering, College of Agriculture and Life Sciences, Seoul National University) ;
  • Decano, Cristina (Department of Rural Systems Engineering, College of Agriculture and Life Sciences, Seoul National University) ;
  • Choi, Young-Bae (Department of Rural Systems Engineering, College of Agriculture and Life Sciences, Seoul National University) ;
  • Lee, Min-Hyung (Department of Rural Systems Engineering, College of Agriculture and Life Sciences, Seoul National University) ;
  • Jeong, Hyo-Hyeog (Department of Rural Systems Engineering, College of Agriculture and Life Sciences, Seoul National University) ;
  • Jeong, Deuk-Young (Institute for Information and Communications Technology Planning and Evaluation)
  • 조정화 (서울대학교 생태조경.지역시스템공학과) ;
  • 이인복 (서울대학교 생태조경.지역시스템공학과) ;
  • 이상연 (서울대학교 생태조경.지역시스템공학과) ;
  • 김준규 (서울대학교 생태조경.지역시스템공학과) ;
  • 크리스티나 (서울대학교 생태조경.지역시스템공학과) ;
  • 최영배 (서울대학교 생태조경.지역시스템공학과) ;
  • 이민형 (서울대학교 생태조경.지역시스템공학과) ;
  • 정효혁 (서울대학교 생태조경.지역시스템공학과) ;
  • 정득영 (정보통신기획평가원)
  • Received : 2022.07.19
  • Accepted : 2022.07.27
  • Published : 2022.07.31

Abstract

Domestic facility agriculture grows rapidly, such as modernization and large-scale. And the production scale increases significantly compared to the area, accounting for about 60% of the total agricultural production. Greenhouses require energy input to create an appropriate environment for stable mass production throughout the year, but the energy load per unit area is large because of low insulation properties. Through the rooftop greenhouse, one of the types of urban agriculture, energy that is not discarded or utilized in the building can be used in the rooftop greenhouse. And the cooling and heating load of the building can be reduced through optimal greenhouse operation. Dynamic energy analysis for various environmental conditions should be preceded for efficient operation of rooftop greenhouses, and about 40% of the solar energy introduced in the greenhouse is energy exchange for crops, so it should be considered essential. A major analysis is needed for each sensible heat and latent heat load by leaf surface temperature and evapotranspiration, dominant in energy flow. Therefore, an experiment was conducted in a rooftop greenhouse located at the Korea Institute of Machinery and Materials to analyze the energy exchange according to the growth stage of crops. A micro-meteorological and nutrient solution environment and growth survey were conducted around the crops. Finally, a regression model of leaf temperature and evapotranspiration according to the growth stage of leafy vegetables was developed, and using this, the dynamic energy model of the rooftop greenhouse considering heat transfer between crops and the surrounding air can be analyzed.

본 연구는 급속하게 성장하는 시설농업과 동시에 증가하는 에너지 사용량 및 탄소배출량을 저감하기 위해, 온실의 에너지 부하를 동적으로 분석하기 위한 작물에너지의 다중 회귀모델 개발을 수행하였다. 온실은 연중 안정적인 대량 생산을 위한 적절한 환경을 조성하기 위해 에너지 투입이 필요하다. 도시농업의 일종인 옥상온실 플랫폼을 통해 건물에서 버려지거나 활용되지 않는 에너지를 옥상온실에서 사용할 수 있다. 옥상온실의 효율적인 운영을 위해서는 다양한 환경 조건에 대한 동적 에너지 분석이 선행되어야 하며, 온실에 도입되는 태양 에너지의 40-75%가 작물을 위한 에너지 교환이므로 필수적으로 고려되어야 한다. 한국기계연구원 내 옥상온실에서 여름철에 청경채를 재배하며 생장단계에 따른 에너지 교환을 분석하였다. 작물을 중심으로 미기상 및 양액 환경 분석과 생장 특성 조사를 수행하였다. 정식일수에 따른 엽면적지수를 추정하였으며, 개발된 수식은 결정계수 0.99로 분석되었다. 또한 작물에너지 흐름에 지배적인 잎 표면온도로부터의 현열부하와 증발산에 의한 잠열부하로 나누어 모델을 개발하였다. 엽온과 증발산량을 각각 다중 회귀모델을 이용하여 추정하고 실측한 값을 비교해 보았을 때, 평균 결정계수 0.95, 0.71로 분석되었으며, 이 모델을 이용하여 옥상온실의 에너지 부하를 동적으로 산정하기 위한 모델에 입력값으로 사용할 수 있을 것으로 판단된다.

Keywords

Acknowledgement

본 연구는 산업통상자원부(MOTIE)와 한국에너지기술평가원(KETEP)의 지원을 받아 수행한 연구 과제입니다(No. 20212020800050).

References

  1. Ahamed M.S., H. Guo, and K. Tanino 2018, Development of a thermal model for simulation of supplemental heating requirements in Chinese-style solar greenhouses. Comput Electron Agric 150:235-44. doi:10.1016/j.compag.2018.04.025
  2. Boulard T., and A. Baille 1987, Analysis of thermal performance of a greenhouse as a solar collector. Energy Agric 6:17-26. doi:10.1016/0167-5826(87)90018-0
  3. Del Amor F.M., P. Cuadra-Crespo, D.J. Walker, and R.M. Camera 2010, Effect of foliar application of antitranspirant on photosynthesis and water relations of pepper plants under different levels of CO2 and water stress. J Plant Physiol 167:1232-1238. doi:10.1016/j.jplph.2010.04.010
  4. Eumorfopoulou E., and D. Aravantinos 1998. The contribution of a planted roof to the thermal protection of buildings in Greece. Energy Build 27:29-36. doi:10.1016/S0378-7788(97)00023-6
  5. Gonzales-Dugo V., F. Orgaz, and E. Fereres 2007, Responses of pepper to deficit irrigation for paprika production. Sci Hortic 114:77-82. doi:10.1016/j.scienta.2007.05.014
  6. Kim Y.J., Y.G. Park, J.M. Lee, and J.H. Park 2021, Mid to long term outlook of carbon dioxide emission and reduction target for horticulture carbon neutrality. Proceedings of the Fall Academic Presentation of the Korean Society of Industrial Academia and Technology.
  7. Lee S.N., S.J. Park, I.B. Lee, T.H. Ha, K.S. Kwon, R.W. Kim, U.H. Yeo, and S.Y. Lee 2016, Design of energy model of greenhouse including plant and estimation of heating and cooling loads for a multi-span plastic-film greenhouse by building energy simulation. Protected Hort Plant Fac 25:123-132. (in Korean) doi:10.12791/KSBEC.2016.25.2.123
  8. Masson G., and I. Kaizuka 2019, Trends in photovoltaic application 2019. International Energy Agency, Paris, France.
  9. Mobtaker H.G., Y. Ajabshirchi, S.F. Ranjbar, and M. Matloobi 2019, Simulation of thermal performance of solar greenhouse in north-west of Iran: An experimental validation. Renew Energy 135:88-97. doi:10.1016/j.renene.2018.10.003
  10. Ministry of Agriculture, Food and Rural Affairs (MAFRA) 2020, Greenhouse cultivation present condition and product statistic. MAFRA, Sejong, Korea.
  11. Rural Development Administration (RDA) 2018, Horticultural facility energy diagnosis & consulting manual. RDA, Jeonju, Korea.
  12. Shakir S.M., and A.A. Farhan 2019, Movable thermal screen for saving energy inside the greenhouse. Association of Arab Univ J Eng Sci 26:106-112. doi:10.33261/jaaru.2019.26.1.014
  13. Shin J.H., J.S. Park, and J.E. Son 2014. Estimating the actual transpiration rate with compensated levels of accumulated radiation for the efficient irrigation of soilless cultures of paprika plants. Agric Water Manag 135:9-18. doi:10.1016/j.agwat.2013.12.009
  14. Singh M.C., J.P. Singh, and K.G. Singh 2018, Development of a microclimate model for prediction of temperatures inside a naturally ventilated greenhouse under cucumber crop in soilless media. Comput Electron Agric 154:227-238. doi:10.1016/j.compag.2018.08.044
  15. United Nations Department of Economic and Social Affairs (UN DESA) 2019, World urbanization prospects: the 2018 revision. UN, NY, USA.
  16. Yoo N.H. 2016, Development of smart farm system for minimizing carbon emissions. J Kor Inst Electron Commun Sci 11:1231-1236. doi:10.13067/JKIECS.2016.11.12.1231