• Title/Summary/Keyword: Variational methods

Search Result 214, Processing Time 0.022 seconds

A refined functional and mixed formulation to static analyses of fgm beams

  • Madenci, Emrah
    • Structural Engineering and Mechanics
    • /
    • v.69 no.4
    • /
    • pp.427-437
    • /
    • 2019
  • In this study, an alternative solution procedure presented by using variational methods for analysis of shear deformable functionally graded material (FGM) beams with mixed formulation. By using the advantages of $G{\hat{a}}teaux$ differential approaches, a refined complex general functional and boundary conditions which comprises seven independent variables such as displacement, rotation, bending moment and higher-order bending moment, shear force and higher-order shear force, is derived for general thick-thin FGM beams via shear deformation beam theories. The mixed-finite element method (FEM) is employed to obtain a beam element which have a 2-nodes and total fourteen degrees-of-freedoms. A computer program is written to execute the analyses for the present study. The numerical results of analyses obtained for different boundary conditions are presented and compared with results available in the literature.

INFINITELY MANY HOMOCLINIC SOLUTIONS FOR DIFFERENT CLASSES OF FOURTH-ORDER DIFFERENTIAL EQUATIONS

  • Timoumi, Mohsen
    • Communications of the Korean Mathematical Society
    • /
    • v.37 no.1
    • /
    • pp.137-161
    • /
    • 2022
  • In this article, we study the existence and multiplicity of homoclinic solutions for the following fourth-order differential equation (1) u(4)(x) + ωu''(x) + a(x)u(x) = f(x, u(x)), ∀x ∈ ℝ where a(x) is not required to be either positive or coercive, and F(x, u) = ∫u0 f(x, v)dv is of subquadratic or superquadratic growth as |u| → ∞, or satisfies only local conditions near the origin (i.e., it can be subquadratic, superquadratic or asymptotically quadratic as |u| → ∞). To the best of our knowledge, there is no result published concerning the existence and multiplicity of homoclinic solutions for (1) with our conditions. The proof is based on variational methods and critical point theory.

INFINITELY MANY HOMOCLINIC SOLUTIONS FOR DAMPED VIBRATION SYSTEMS WITH LOCALLY DEFINED POTENTIALS

  • Selmi, Wafa;Timoumi, Mohsen
    • Communications of the Korean Mathematical Society
    • /
    • v.37 no.3
    • /
    • pp.693-703
    • /
    • 2022
  • In this paper, we are concerned with the existence of infinitely many fast homoclinic solutions for the following damped vibration system $$(1){\hspace{32}}{\ddot{u}}(t)+q(t){\dot{u}}(t)-L(t)u(t)+{\nabla}W(t,u(t))=0,\;{\forall}t{\in}{\mathbb{R}},$$ where q ∈ C(ℝ, ℝ), L ∈ C(ℝ, ${\mathbb{R}}^{N^2}$) is a symmetric and positive definite matix-valued function and W ∈ C1(ℝ×ℝN, ℝ). The novelty of this paper is that, assuming that L is bounded from below unnecessarily coercive at infinity, and W is only locally defined near the origin with respect to the second variable, we show that (1) possesses infinitely many homoclinic solutions via a variant symmetric mountain pass theorem.

MULTIPLE SOLUTIONS OF A PERTURBED YAMABE-TYPE EQUATION ON GRAPH

  • Liu, Yang
    • Journal of the Korean Mathematical Society
    • /
    • v.59 no.5
    • /
    • pp.911-926
    • /
    • 2022
  • Let u be a function on a locally finite graph G = (V, E) and Ω be a bounded subset of V. Let 𝜀 > 0, p > 2 and 0 ≤ λ < λ1(Ω) be constants, where λ1(Ω) is the first eigenvalue of the discrete Laplacian, and h : V → ℝ be a function satisfying h ≥ 0 and $h{\not\equiv}0$. We consider a perturbed Yamabe equation, say $$\{\begin{array}{lll}-{\Delta}u-{\lambda}u={\mid}u{\mid}^{p-2}u+{\varepsilon}h,&&\text{ in }{\Omega},\\u=0,&&\text{ on }{\partial}{\Omega},\end{array}$$ where Ω and ∂Ω denote the interior and the boundary of Ω, respectively. Using variational methods, we prove that there exists some positive constant 𝜀0 > 0 such that for all 𝜀 ∈ (0, 𝜀0), the above equation has two distinct solutions. Moreover, we consider a more general nonlinear equation $$\{\begin{array}{lll}-{\Delta}u=f(u)+{\varepsilon}h,&&\text{ in }{\Omega},\\u=0,&&\text{ on }{\partial}{\Omega},\end{array}$$ and prove similar result for certain nonlinear term f(u).

Analysis of circular tank foundation on multi-layered soil subject to combined vertical and lateral loads

  • Hesham F. Elhuni;Bipin K. Gupta;Dipanjan Basu
    • Geomechanics and Engineering
    • /
    • v.32 no.6
    • /
    • pp.553-566
    • /
    • 2023
  • A circular tank foundation resting on the ground and subjected to axisymmetric horizontal and vertical loads and moments is analyzed using the variational principles of mechanics. The circular foundation is assumed to behave as a Kirchhoff plate with in-plane and transverse displacements. The soil beneath the foundation is assumed to be a multi-layered continuum in which the horizontal and vertical displacements are expressed as products of separable functions. The differential equations of plate and soil displacements are obtained by minimizing the total potential energy of the plate-soil system and are solved using the finite element and finite difference methods following an iterative algorithm. Comparisons with the results of equivalent two-dimensional finite element analysis and other researchers establish the accuracy of the method.

MULTIPLICITY RESULTS OF CRITICAL LOCAL EQUATION RELATED TO THE GENUS THEORY

  • Mohsen Alimohammady;Asieh Rezvani;Cemil Tunc
    • Communications of the Korean Mathematical Society
    • /
    • v.38 no.4
    • /
    • pp.1045-1061
    • /
    • 2023
  • Using variational methods, Krasnoselskii's genus theory and symmetric mountain pass theorem, we introduce the existence and multiplicity of solutions of a parameteric local equation. At first, we consider the following equation $$\{-div[a(x,{\mid}{\nabla}u{\mid}){\nabla}u]\,=\,{\mu}(b(x){\mid}u{\mid}^{s(x)-2}-{\mid}u{\mid}^{r(x)-2})u\;in\;{\Omega},\\u\,=0\,on\;{\partial}{\Omega},$$ where Ω⊆ ℝN is a bounded domain, µ is a positive real parameter, p, r and s are continuous real functions on ${\bar{\Omega}}$ and a(x, ξ) is of type |ξ|p(x)-2. Next, we study boundedness and simplicity of eigenfunction for the case a(x, |∇u|)∇u = g(x)|∇u|p(x)-2∇u, where g ∈ L(Ω) and g(x) ≥ 0 and the case $a(x,\,{\mid}{\nabla}u{\mid}){{\nabla}u}\,=\,(1\,+\,{\nabla}u{\mid}^2)^{\frac{p(x)-2}{2}}{\nabla}u$ such that p(x) ≡ p.

Time varying LQR-based optimal control of geometrically exact Reissner's beam model

  • Suljo Ljukovac;Adnan Ibrahimbegovic;Maida Cohodar-Husic
    • Coupled systems mechanics
    • /
    • v.13 no.1
    • /
    • pp.73-93
    • /
    • 2024
  • In this work, we propose combining an advanced optimal control algorithm with a geometrically exact beam model. For simplicity, the 2D Reissner beam model is chosen to represent large displacements and rotations. The difficulty pertains to the nonlinear nature of beam kinematics affecting the tangent stiffness matrix, making it non-constant, which compromises direct use of optimal control methods for linear problems. Thus, we seek to accommodate a time varying control using linear-quadratic regulator (LQR) algorithm with the proposed geometrically nonlinear beam model. We provide a detailed theoretical formulation and its numerical implementation in a variational format form. Several illustrative numerical examples are provided to confirm an excellent performance of the proposed methodology.

Coupled electro-elastic analysis of functionally graded piezoelectric material plates

  • Wu, Chih-Ping;Ding, Shuang
    • Smart Structures and Systems
    • /
    • v.16 no.5
    • /
    • pp.781-806
    • /
    • 2015
  • A unified formulation of finite layer methods (FLMs), based on the Reissner mixed variational theorem (RMVT), is developed for the three-dimensional (3D) coupled electro-elastic analysis of simply-supported, functionally graded piezoelectric material (FGPM) plates with open- and closed-circuit surface conditions and under electro-mechanical loads. In this formulation, the material properties of the plate are assumed to obey an exponent-law varying exponentially through the thickness coordinate, and the plate is divided into a number of finite rectangular layers, in which the trigonometric functions and Lagrange polynomials are used to interpolate the in- and out-of-plane variations of the primary field variables of each individual layer, respectively, such as the elastic displacement, transverse shear and normal stress, electric potential, and normal electric displacement components. The relevant orders used for expanding these variables in the thickness coordinate can be freely chosen as the linear, quadratic and cubic orders. Four different mechanical/electrical loading conditions applied on the top and bottom surfaces of the plate are considered, and the corresponding coupled electro-elastic analysis of the loaded FGPM plates is undertaken. The accuracy and convergence rate of the RMVT-based FLMs are assessed by comparing their solutions with the exact 3D piezoelectricity ones available in the literature.

The Potential Energy Surface of BH5 and the Rate of the Hydrogen Scrambling

  • Kim, Kyung-Hyun;Kim, Yong-Ho
    • Bulletin of the Korean Chemical Society
    • /
    • v.24 no.6
    • /
    • pp.763-770
    • /
    • 2003
  • The $BH_5$ molecule, which is suggested as an intermediate of the acidolysis of $BH_4^-$, contains a weak two-electron-three-center bond and it requires extremely high-level of theories to calculate the energy and structure correctly. The structures and energies of $BH_5$ and the transition state for the hydrogen scrambling have been studied using recently developed multi-coefficient correlated quantum mechanical methods (MCCMs). The dissociation energies and the barrier heights agree very well with the previous results at the CCSD(T)/ TZ(3d1f1g, 2p1d) level. We have also calculated the potential energy curves for the dissociation of $BH_5$ to $BH_3$ and $H_2$. The lower levels of theory were unable to plot correct potential curves, whereas the MCCM methods give very good potential energy curves and requires much less computing resources than the CCSD(T)/ TZ(3d1f1g,2p1d) level. The potential energy of the $BH_5$ scrambling has been obtained by the multiconfiguration molecular mechanics algorithm (MCMM), and the rates are calculated using the variational transition state theory including multidimensional tunneling approximation. The rate constant at 300 K is 2.1 × $10^9s^{-1}$, and tunneling is very important.

A Study on the Characteristics of Furniture Design Using Generative Design - Focus on the Furniture Design using Fractal Geometry and Voronoi Diagram - (생성적 디자인을 이용한 가구디자인의 특성에 관한 연구 - 프랙탈 기하학과 보로노이 다이어그램을 적용한 가구디자인을 중심으로 -)

  • Lee, Jin-Wook
    • Korean Institute of Interior Design Journal
    • /
    • v.20 no.1
    • /
    • pp.89-97
    • /
    • 2011
  • Furniture design is no exception to human desire for pursuit of the nature. In various design fields, it has turned out nature-decorative method in the past, and also recently it has turned out bio-adaptive method which is more root design process using principal of generation in nature world. The purpose of this study is to analyze application methods and characteristics of fractal geometry and voronoi diagram which are most representative principals of generative design in nature by research on the example of furniture design using these principals. The results of having analyzed fumitures by generative design can be summarized as follows; design principals of fractal; superposition, scaling, repetition & gradation, deformation, distortion and voronoi diagram; individual speciation, variational patten, repetition gradation, ambiguous boundary create new design concept and emergent form in furniture design. Application methods are 'form emergence by algorithm', 'conventional process based on principals of generative design', and 'reproduction of pattern from generative design'. Biological reinterpretations and new explorations of principals of nature generation offer unbounded possibilities for furniture design.