INFINITELY MANY HOMOCLINIC SOLUTIONS FOR DIFFERENT CLASSES OF FOURTH-ORDER DIFFERENTIAL EQUATIONS

Mohsen Timoumi

Abstract

In this article, we study the existence and multiplicity of homoclinic solutions for the following fourth-order differential equation

(1) $\quad u^{(4)}(x)+\omega u^{\prime \prime}(x)+a(x) u(x)=f(x, u(x)), \forall x \in \mathbb{R}$
where $a(x)$ is not required to be either positive or coercive, and $F(x, u)=$ $\int_{0}^{u} f(x, v) d v$ is of subquadratic or superquadratic growth as $|u| \rightarrow \infty$, or satisfies only local conditions near the origin (i.e., it can be subquadratic, superquadratic or asymptotically quadratic as $|u| \rightarrow \infty)$. To the best of our knowledge, there is no result published concerning the existence and multiplicity of homoclinic solutions for (1) with our conditions. The proof is based on variational methods and critical point theory.

1. Introduction

Consider the following fourth-order differential equation

$$
\begin{equation*}
u^{(4)}(x)+\omega u^{\prime \prime}(x)+a(x) u(x)=f(x, u(x)), \forall x \in \mathbb{R} \tag{F}
\end{equation*}
$$

where ω is a constant, $a \in C(\mathbb{R}, \mathbb{R})$ and $f \in C\left(\mathbb{R}^{2}, \mathbb{R}\right)$ are two given functions. It is well-known that the mathematical modeling of important questions in different fields of research, such as mechanical engineering, control systems, economics and many others, leads naturally to the consideration of the nonlinear differential equations. In particular, the fourth-order differential equations, like (\mathcal{F}) have been put forward as mathematical model for the study of pattern formation in physics and mechanics. For example, the well-known extended Fisher-Kolmogorov equation proposed by Coulet et al. in 1987 [3], in the study of phase transitions, the fourth-order elastic beam equation in describing a large class of elastic deflection [12], the Swift-Hohenberg equation which is a general model for pattern-forming process derived in [4] to describe vandom thermal fluctuations in the Boussinesque equation and the propagation of lazers [6].

[^0]Here as usual, we say that a solution u of (\mathcal{F}) is homoclinic (to 0) if $u \in$ $C^{4}(\mathbb{R}, \mathbb{R})$ and $u(x) \rightarrow 0$ as $|x| \rightarrow \infty$. In addition, if $u \neq 0$, then u is called a nontrivial homoclinic solution. In the past years, based on variational methods and critical point theory, many researchers are interested in the existence of homoclinic solutions to equation (\mathcal{F}). The main difficulty in handling system (\mathcal{F}) arises from the fact that $H^{2}(\mathbb{R})$ is not compactly embedded in $L^{p}(\mathbb{R})$ for $p \in[2, \infty]$. To overcome this difficulty, many authors have considered the case where $a(x)$ and $f(x, u)$ are independent of x or periodic in x, see $[1,2,7,14,17]$ and the references listed therein. In this case, the existence of homoclinic solutions can be obtained by going to the limit of periodic solutions of approximating problems. If $a(x)$ and $f(x, u)$ are neither autonomous in x nor periodic in x, the existence of homoclinic solutions of (\mathcal{F}) is quite different from the ones just described because of the lack of compactness of the Sobolev embedding. Notice that for the nonperiodic case, to obtain the existence of homoclinic solutions, the following coercive condition on a is often needed:

There exists a constant $a_{0}>0$ such that

$$
\begin{equation*}
a_{0} \leq a(x) \rightarrow+\infty \quad \text { as }|x| \rightarrow \infty \tag{1.1}
\end{equation*}
$$

and

$$
\omega \leq 2 \sqrt{a_{0}}
$$

which is used to establish the corresponding compact embedding lemmas on suitable functional spaces, see $[8-11,15,16,19-22]$ and the references cited therein. Recently, the author [18] strengthened condition (1.1) by (1.2):

There exists a constant $\sigma<0$ such that

$$
\begin{equation*}
|x|^{\sigma-1} a(x) \rightarrow+\infty \text { as }|x| \rightarrow \infty ; \tag{1.2}
\end{equation*}
$$

Under condition (1.2) and some locally conditions near the origin on $f(x, u)$, the author [18] proved the existence of infinitely many homoclinic orbits for equation (\mathcal{F}). However, if the function a is not coercive, the conditions (1.1) and (1.2) do not hold.

Inspired by the previous results, in the present paper, we are interested in the existence of infinitely many solutions for (\mathcal{F}) under some weaker conditions than (1.1), (1.2) and we discuss three classes of potentials. The remainder of this article consists of four sections. After presenting some preliminaries and proving some compactness results which will aid in our analysis, we establish in Sections 3 and 4 the existence of homoclinic orbits respectively for the subquadratic and superquadratic cases. The last Section is devoted to the case where the nonlinearity still only satisfies locally conditions near the origin (i.e., it can be subquadratic, superquadratic or asymptotically quadratic at infinity).

2. Preliminaries

Let $H^{2}(\mathbb{R})$ be the Sobolev space with inner product and norm given respectively by

$$
\begin{aligned}
\langle u, v\rangle_{H^{2}} & =\int_{\mathbb{R}}\left[u^{\prime \prime}(x) v^{\prime \prime}(x)+u^{\prime}(x) v^{\prime}(x)+u(x) v(x)\right] d x \\
\|u\|_{H^{2}} & =\langle u, u\rangle_{H^{2}}^{\frac{1}{2}}
\end{aligned}
$$

for all $u, v \in H^{2}(\mathbb{R})$.
In the following, we shall use $\|\cdot\|_{L^{s}}$ to denote the norm of $L^{s}(\mathbb{R})$ for any $s \in$ $[1, \infty]$. Let χ be the self-adjoint extension of the operator $\frac{d^{4}}{d x^{4}}+\omega \frac{d^{2}}{d x^{2}}+a(x)$ with the domain $\mathcal{D}(\chi) \subset L^{2}(\mathbb{R})$. Let $\{\mathcal{E}(\lambda):-\infty<\lambda<\infty\}$ denotes the resolution of χ, and $U=I-\mathcal{E}(0)-\mathcal{E}(-0)$. It is well known that U commutes with $\chi,|\chi|$ and $|\chi|^{\frac{1}{2}}$, and $\chi=|\chi| U$ is the polar decomposition of χ. Set $E=\mathcal{D}\left(|\chi|^{\frac{1}{2}}\right)$ and define on E the inner product

$$
\left.\langle u, v\rangle_{0}=\left.\langle | \chi\right|^{\frac{1}{2}} u,|\chi|^{\frac{1}{2}} v\right\rangle_{L^{2}}+\langle u, v\rangle_{L^{2}}
$$

and the corresponding norm

$$
\|u\|_{0}=\langle u, u\rangle_{0}^{\frac{1}{2}} .
$$

Lemma 2.1 ([2, Lemma 8]). Assume that there exists $a_{0}>0$ such that $\omega \leq$ $2 \sqrt{a_{0}}, a_{0} \leq a(x), \forall x \in \mathbb{R}$. Then there exists a constant $c_{0}>0$ such that

$$
\int_{\mathbb{R}}\left[u^{\prime \prime}(x)^{2}-\omega u^{\prime}(x)^{2}+a(x) u(x)^{2}\right] d x \geq c_{0}\|u\|_{H^{2}}^{2}, \forall u \in H^{2}(\mathbb{R})
$$

The main difficulty in dealing with the existence of solutions for (\mathcal{F}) is the lack of compactness of the Sobolev embedding. To overcome this difficulty consider the following assumption:
$\left(\mathcal{A}_{\sigma}\right) a$ is bounded from below and there exists a constant $\sigma>1$ such that

$$
\operatorname{meas}\left(\left\{x \in \mathbb{R}:|x|^{-\sigma} a(x)<b\right\}\right)<+\infty, \forall b>0
$$

where meas denotes the Lebesgue's measure on \mathbb{R}.
Lemma 2.2. Assume that $\left(\mathcal{A}_{\sigma}\right)$ is satisfied. Then E is compactly embedded in $L^{s}(\mathbb{R})$ for all $s \in[1, \infty]$.

Proof. First, we will assume that the function a satisfies the following condition: There exists a constant $a_{0}>0$ such that

$$
\begin{equation*}
\omega \leq 2 \sqrt{a_{0}}, a_{0} \leq a(x), \forall x \in \mathbb{R} \tag{2.1}
\end{equation*}
$$

For any $\epsilon>0$, by condition $\left(\mathcal{A}_{\sigma}\right)$ we can choose $r_{\epsilon} \geq 1$ such that meas $\left(B_{\epsilon}\right) \leq \epsilon$, where

$$
B_{\epsilon}=\left\{x \in \mathbb{R} \backslash\left[-r_{\epsilon}, r_{\epsilon}\right]:|x|^{-\sigma} a(x)<\frac{1}{\epsilon}\right\} .
$$

Let

$$
\left.D_{\epsilon}=\mathbb{R} \backslash\left(B_{\epsilon} \cup\right]-r_{\epsilon}, r_{\epsilon[}\right)
$$

and

$$
l_{\epsilon}=\inf _{x \in D_{\epsilon}}|x|^{-\sigma} a(x)
$$

Then $\frac{1}{l_{\epsilon}} \leq \epsilon$. Let $\left(u_{k}\right)$ be a sequence such that $u_{k} \rightharpoonup u$ weakly in E. The Banach-Steinhauss Theorem implies that

$$
M=\sup _{k \in \mathbb{N}}\left\|u_{k}-u\right\|_{0}<\infty .
$$

Since $E \subset H^{2}(\mathbb{R}) \subset L^{p}(\mathbb{R})$ for all $p \in[2, \infty]$ with continuous embedding, there exists a constant $M_{0}>0$ such that

$$
\left\|u_{k}-u\right\|_{L^{\infty}} \leq M_{0}, \forall k \in \mathbb{N}
$$

Since $a(x) \geq a_{0}$ in $\left.I_{\epsilon}=\right]-r_{\epsilon}, r_{\epsilon}\left[\right.$, the operator $P: E \rightarrow H^{2}\left(I_{\epsilon}\right), u \longmapsto u_{\mid I_{\epsilon}}$ is a continuous linear operator, where $H^{2}\left(I_{\epsilon}\right)$ denotes the weighted Sobolev space

$$
H^{2}\left(I_{\epsilon}\right)=\left\{u: I_{\epsilon} \rightarrow \mathbb{R}: \int_{I_{\epsilon}}\left[u^{\prime \prime}(x)^{2}-\omega u^{\prime}(x)^{2}+a(x) u(x)^{2}\right] d x<+\infty\right\}
$$

Sobolev's embedding Theorem implies that $u_{k} \rightarrow u$ uniformly in \bar{I}_{ϵ}.
Step 1. We claim that E is compactly embedded in $L^{\infty}(\mathbb{R})$. In fact, firstly, let us remark that for any $n \in \mathbb{N}$ and $x \in \mathbb{R},|x| \geq r_{\epsilon}$, one has for $v \in E$

$$
v(x)=\int_{x}^{x+1}\left[-\dot{v}(s)(x+1-s)^{n+1}+v(s)(n+1)(x+1-s)^{n}\right] d s
$$

So by Hölder's inequality

$$
|v(x)| \leq \frac{1}{\sqrt{2 n+3}}\left(\int_{x}^{x+1}|\dot{v}(s)|^{2} d s\right)^{\frac{1}{2}}+\frac{n+1}{\sqrt{2 n+1}}\left(\int_{x}^{x+1}|v(s)|^{2} d s\right)^{\frac{1}{2}}
$$

for any $n \in \mathbb{N}$ and $x \in \mathbb{R}$. Then for any $n, k \in \mathbb{N}$ and $|x| \geq r_{\epsilon}$ one has

$$
\begin{aligned}
& \left|u_{k}(x)-u(x)\right| \\
\leq & \frac{1}{\sqrt{2 n+3}}\left(\int_{|s| \geq r_{\epsilon}}\left|\dot{u}_{k}(s)-\dot{u}(s)\right|^{2} d s\right)^{\frac{1}{2}}+\frac{n+1}{\sqrt{2 n+1}}\left(\int_{|s| \geq r_{\epsilon}}\left|u_{k}(s)-u(s)\right|^{2} d s\right)^{\frac{1}{2}} \\
\leq & \frac{M}{\sqrt{2 n+3} \sqrt{\omega}}+\frac{n+1}{\sqrt{2 n+1}}\left(\operatorname{meas}\left(B_{\epsilon}\right)\right)^{\frac{1}{2}}\left\|u_{k}-u\right\|_{\infty} \\
& +\frac{n+1}{\sqrt{2 n+1}}\left(\frac{1}{l_{\epsilon}} \int_{D_{\epsilon}}|s|^{-\sigma} a(s)\left|u_{k}-u^{2}\right| d s\right)^{\frac{1}{2}} \\
\leq & \frac{M}{\sqrt{2} \sqrt{n+1} \sqrt{\omega}}+\sqrt{2}\left(M_{0}+M\right) \sqrt{n} \epsilon^{\frac{1}{2}} .
\end{aligned}
$$

Choose $n=\left[\epsilon^{-\frac{1}{2}}\right]$ (the integer part of $\epsilon^{-\frac{1}{2}}$), then $n \leq \epsilon^{-\frac{1}{2}}<n+1$. Hence

$$
\begin{equation*}
\left|u_{k}(x)-u(x)\right| \leq\left[\frac{M}{\sqrt{2 \omega}}+M_{0} \sqrt{2}\right] \epsilon^{\frac{1}{4}}, \forall|x| \geq r_{\epsilon} \tag{2.2}
\end{equation*}
$$

HOMOCLINIC SOLUTIONS FOR FOURTH-ORDER DIFFERENTIAL EQUATIONS 141

On the other hand, since $u_{k} \rightarrow u$ uniformly on I_{ϵ}, there exists $k_{0} \in \mathbb{N}$ such that for all $k \geq k_{0}$

$$
\begin{equation*}
\left\|u_{k}-u\right\|_{L^{\infty}\left(I_{\epsilon}\right)}<\epsilon . \tag{2.3}
\end{equation*}
$$

Combining (2.2) and (2.3), we get $u_{k} \rightarrow u$ in $L^{\infty}(\mathbb{R})$.
Step 2: E is compactly embedded in $L^{2}(\mathbb{R})$. In fact, we have

$$
\begin{aligned}
\int_{|x| \geq r_{\epsilon}}\left|u_{k}(x)-u(x)\right|^{2} d x & =\int_{B_{\epsilon}}\left|u_{k}(x)-u(x)\right|^{2} d x+\int_{D_{\epsilon}}\left|u_{k}(x)-u(x)\right|^{2} d x \\
& \leq \operatorname{meas}\left(B_{\epsilon}\right) M_{0}^{2}+\frac{1}{l_{\epsilon}} \int_{D_{\epsilon}} a(x)\left|u_{k}(x)-u(x)\right|^{2} d x \\
& \leq\left(M^{2}+M_{0}^{2}\right) \epsilon
\end{aligned}
$$

Since $u_{k} \rightarrow u$ uniformly on I_{ϵ}, we get $\left\|u_{k}-u\right\|_{L^{2}} \rightarrow 0$ as $k \rightarrow \infty$.
Step 3: $p \in] 2, \infty\left[\right.$. We claim that E is compactly embedded in $L^{p}(\mathbb{R})$. In fact, we have

$$
\left\|u_{k}-u\right\|_{L^{p}}^{p} \leq\left\|u_{k}-u\right\|_{L^{\infty}}^{p-2}\left\|u_{k}-u\right\|_{L^{2}}^{2} .
$$

By Steps 1 and 2, we deduce that $u_{k} \rightarrow u$ in $L^{p}(\mathbb{R})$.
Step 4: $p \in\left[1,2\left[\right.\right.$. We claim that $u_{k} \rightarrow u$ in $L^{p}(\mathbb{R})$. Let $s=\frac{\sigma}{2-p}$. Then $p>\frac{2}{1+\sigma}$ and $s p>1$. For $v \in L^{p}(\mathbb{R})$, we have

$$
\int_{|x| \geq r_{\epsilon}}|v(x)|^{p} d x
$$

$$
=\int_{B_{\epsilon}}|v(x)|^{p} d x+\int_{\left\{x \in D_{\epsilon}:|x|^{s}|v(x)| \leq 1\right\}}|v(x)|^{p} d x+\int_{\left\{x \in D_{\epsilon}:|x|^{s}|v(x)| \geq 1\right\}}|v(t)|^{p} d x
$$

$$
\leq\left(\operatorname{meas}\left(B_{\epsilon}\right)\right)^{\frac{1}{2}}\|v\|_{L^{2 p}}^{p}+\int_{|x| \geq r_{\epsilon}}|x|^{-\sigma} d x+\int_{D_{\epsilon}}\left(|x|^{s}|v(x)|\right)^{2}|x|^{-s p} d x
$$

$$
\leq \epsilon^{\frac{1}{2}}\|v\|_{L^{2 p}}^{p}+\int_{|x| \geq r_{\epsilon}}|x|^{-\sigma} d x+\int_{|x| \geq r_{\epsilon}}|x|^{\sigma}|v(x)|^{2} d x
$$

$$
\leq \epsilon^{\frac{1}{2}}\|v\|_{L^{2 p}}^{p}+\int_{|x| \geq r_{\epsilon}}|x|^{-\sigma} d x+\frac{1}{l_{\epsilon}}\|v\|_{0}^{2} .
$$

Choose r_{ϵ} such that $\int_{|x| \geq r_{\epsilon}}|x|^{-\sigma} d x \leq \epsilon^{\frac{1}{2}}$, we obtain

$$
\int_{|x| \geq r_{\epsilon}}|v(x)|^{p} d x \leq \epsilon^{\frac{1}{2}}\|v\|_{L^{2 p}}^{p}+\epsilon^{\frac{1}{2}}+\epsilon^{\frac{1}{2}}\|v\|_{0}^{2} .
$$

Hence, we have

$$
\int_{|x| \geq r_{\epsilon}}\left|u_{k}(x)-u(x)\right|^{p} d x \leq \epsilon^{\frac{1}{2}}\left\|u_{k}-u\right\|_{L^{2 p}}^{p}+\epsilon^{\frac{1}{2}}+\epsilon^{\frac{1}{2}}\left\|u_{k}-u\right\|_{0}^{2}
$$

Since $2 p \geq 2$, we deduce from Steps 2,3 , the existence of a constant $M_{1}>0$ such that

$$
\int_{|x| \geq r_{\epsilon}}\left|u_{k}(x)-u(x)\right|^{p} d x \leq \epsilon^{\frac{1}{2}}\left(M_{1}^{p}+1+M^{2}\right) .
$$

As above $\int_{I_{\epsilon}}\left|u_{k}(x)-u(x)\right|^{p} d x \rightarrow 0$ as $k \rightarrow \infty$. Hence $u_{k} \rightarrow u$ in $L^{p}(\mathbb{R})$.
Now, by a standard argument, we prove the general case which does not need the condition (2.1) for all $t \in \mathbb{R}$. The proof of Lemma 2.2 is completed.

By Lemma 2.2, we see, since the selfadjoint operator χ in $L^{2}(\mathbb{R})$ is bounded from below, it possesses a compact resolvent. Therefore, the spectrum $\sigma(\chi)$ consists of eigenvalues numbered in $\lambda_{1} \leq \lambda_{2} \leq \cdots \rightarrow+\infty$ (counted in their multiplicities), and a corresponding system of eigenfunctions $\left(e_{j}\right)_{j \in \mathbb{N}},\left(\chi e_{j}=\right.$ $\lambda_{j} e_{j}$), forms an orthonormal basis in $L^{2}(\mathbb{R})$. Let k^{-}(resp. k^{0}) be the number of $\lambda_{j}<0\left(\right.$ resp. $\left.\lambda_{j}=0\right), \bar{k}=k^{-}+k^{0}$ and let $E^{-}=\operatorname{span}\left\{e_{1}, \ldots, e_{k^{-}}\right\}, E^{0}=$ $\operatorname{span}\left\{e_{k^{-}+1}, \ldots, e_{\bar{k}}\right\}$ and $E^{+}=\overline{\operatorname{span}\left\{e_{\bar{k}+1}, \ldots\right\}}$. Then $E=E^{-} \oplus E^{0} \oplus E^{+}$. We introduce on E the following inner product

$$
\left.\langle u, v\rangle=\left.\langle | \chi\right|^{\frac{1}{2}} u,|\chi|^{\frac{1}{2}} v\right\rangle_{L^{2}}+\left\langle u^{0}, v^{0}\right\rangle_{L^{2}}
$$

and the corresponding norm

$$
\|u\|^{2}=\left\||\chi|^{\frac{1}{2}} u\right\|_{L^{2}}^{2}+\left\|u^{0}\right\|_{L^{2}}^{2}
$$

where $u=u^{-}+u^{0}+u^{+}, v=v^{-}+v^{0}+v^{+} \in E^{-} \oplus E^{0} \oplus E^{+}$. Clearly, $\|u\|_{L^{2}}^{2} \leq \lambda\|u\|^{2}$ for all $u \in E$, where $\lambda=\max \left\{1, \lambda_{\bar{k}+1}^{-1},\left|\lambda_{k^{-}}\right|^{-1}\right\}$. Since $\|u\|_{0}^{2}=$ $\left\|u^{-}+u^{0}\right\|_{L^{2}}^{2}+\|u\|^{2}$ for all $u \in E$, one has $\|u\|^{2} \leq\|u\|_{0}^{2} \leq(1+\lambda)\|u\|^{2}$, i.e., the norms $\|\cdot\|_{0}$ and $\|\cdot\|$ are equivalent. From now on the norm $\|\cdot\|$ on E will be used. By Lemma 2.2, for all $p \in[1, \infty]$, there exists a constant $\eta_{p}>0$ such that

$$
\begin{equation*}
\|u\|_{L^{p}} \leq \eta_{p}\|u\|, \quad \forall u \in E \tag{2.4}
\end{equation*}
$$

For later use, let

$$
\left.a(u, v)=\left.\langle | \chi\right|^{\frac{1}{2}} U u,|\chi|^{\frac{1}{2}} v\right\rangle_{L^{2}}, \quad \forall u, v \in E
$$

be the quadratic form associated with χ. For any $u \in \mathcal{D}(\chi)$ and $v \in E$, we have

$$
\begin{equation*}
a(u, v)=\int_{\mathbb{R}}\left[u^{\prime \prime}(x) v^{\prime \prime}(x)-\omega u^{\prime}(x) v^{\prime}(x)+a(x) u(x) v(x)\right] d x \tag{2.5}
\end{equation*}
$$

and so, since $\mathcal{D}(\chi)$ is dense in E, (2.5) holds for all $u \in E$. Moreover, by definition

$$
\begin{equation*}
a(u, u)=\left\|u^{+}\right\|^{2}-\left\|u^{-}\right\|^{2} \tag{2.6}
\end{equation*}
$$

for all $u=u^{-}+u^{0}+u^{+} \in E=E^{-} \oplus E^{0} \oplus E^{+}$.

3. Subquadratic case

In this section, we are interested in the existence of infinitely many homoclinic solutions for equation (\mathcal{F}) when the potential $F(x, u)=\int_{0}^{u} f(x, u) d x$ is subquadratic at infinity with respect to u. More precisely, we make the following assumptions.
$\left(F_{1}\right) F(x, u) \geq 0$ for all $(x, u) \in \mathbb{R}^{2}$ and there exist constants $0<\mu<2$ and $R>0$ such that

$$
f(x, u) u \leq \mu F(x, u), \forall x \in \mathbb{R},|u| \geq R
$$

and

$$
f(x, u) u \leq 2 F(x, u), \forall x \in \mathbb{R},|u| \leq R
$$

$\left(F_{2}\right) \lim _{|u| \rightarrow 0} \frac{F(x, u)}{|u|^{2}}=+\infty$ uniformly for $x \in \mathbb{R}$;
$\left(F_{3}\right)$ There exists a constant $c>0$ such that

$$
|f(x, u)| \leq c|u|, \forall x \in \mathbb{R},|u| \leq R
$$

where R is the constant in $\left(F_{1}\right)$;
$\left(F_{4}\right) \liminf _{|u| \rightarrow \infty} \frac{F(x, u)}{|u|} \geq a$, where a is a positive constant.
Our main result in this section reads as follows.
Theorem 3.1. Suppose that $\left(\mathcal{A}_{\sigma}\right),\left(F_{1}\right)-\left(F_{4}\right)$ hold and $F(x, u)$ is even in u for all $x \in \mathbb{R}$. Then (\mathcal{F}) possesses infinitely many nontrivial homoclinic solutions.

Example 3.2. Let

$$
F(x, u)=h(x)|u|^{\mu}
$$

where $0<\inf _{x \in \mathbb{R}} h(x) \leq \sup _{x \in \mathbb{R}} h(x)<\infty$ for all $x \in \mathbb{R}$ and $\mu \in[1,2[$. It is easy to check that F satisfies conditions $\left(F_{1}\right)-\left(F_{4}\right)$.

Proof of Theorem 3.1

In the following, $c_{n}, n \in \mathbb{N}$ denotes some various positive constants. For equation (\mathcal{F}), we associate the following functional defined on the space E introduced in Section 2 by

$$
\Phi(u)=\frac{1}{2} \int_{\mathbb{R}}\left[u^{\prime \prime}(x)^{2}-\omega u^{\prime}(x)^{2}+a(x) u(x)^{2}\right] d x-\int_{\mathbb{R}} F(x, u(x)) d x
$$

Then by (2.6), Φ can be rewritten as

$$
\Phi(u)=\frac{1}{2}\left(\left\|u^{+}\right\|^{2}-\left\|u^{-}\right\|^{2}\right)-\varphi(u), u=u^{-}+u^{0}+u^{+} \in E
$$

where

$$
\varphi(u)=\int_{\mathbb{R}} F(x, u(x)) d x, u \in E
$$

It is well known that under assumptions of Theorem 3.1 the functional Φ is continuously differentiable on E and its critical points on E are exactly the
homoclinic solutions of the equation (\mathcal{F}). Moreover φ^{\prime} is compact and for all $u, v \in E$
$\Phi^{\prime}(u) v=\int_{\mathbb{R}}\left[u^{\prime \prime}(x) v^{\prime \prime}(x)-\omega u^{\prime}(x) v^{\prime}(x)+a(x) u(x) v(x)\right] d x-\int_{\mathbb{R}} f(x, u(x)) v(x) d x$.
To prove Theorem 3.1, the following Variant Fountain Theorem developed by Zou [22] will be needed. Let E be a Banach space with the norm $\|\cdot\|$ and $E=\overline{\oplus_{m \in \mathbb{N}} X_{m}}$ with $\operatorname{dim} X_{m}<\infty$ for any $m \in \mathbb{N}$. Set

$$
Y_{k}=\oplus_{m=1}^{k} X_{m}, \quad Z_{k}=\overline{\oplus_{m=k}^{\infty} X_{m}}
$$

Consider a family of functionals $f_{\lambda} \in C^{1}(E, \mathbb{R})$ defined by

$$
\Phi_{\lambda}(u)=A(u)-\lambda B(u), u \in E, \lambda \in[1,2] .
$$

Lemma 3.3 ([22]). Assume that the functionals f_{λ} defined previously, satisfy $\left(T_{1}\right) \Phi_{\lambda}$ maps bounded sets into bounded sets uniformly for all $\lambda \in[1,2]$ and

$$
\Phi_{\lambda}(-u)=\Phi_{\lambda}(u), \forall(\lambda, u) \in[1,2] \times E
$$

$\left(T_{2}\right) B(u) \geq 0$ for all $u \in E$ and $B(u) \rightarrow+\infty$ as $\|u\| \rightarrow \infty$ on any finite dimensional subspace of E;
$\left(T_{3}\right)$ There exist $\rho_{k}>r_{k}>0$ such that

$$
a_{k}(\lambda)=\inf _{u \in Z_{k},\|u\|=\rho_{k}} \Phi_{\lambda}(u) \geq 0>b_{k}(\lambda)=\max _{u \in Y_{k},\|u\|=r_{k}} \Phi_{\lambda}(u)
$$

for all $\lambda \in[1,2]$ and

$$
d_{k}(\lambda)=\inf _{u \in Z_{k},\|u\| \leq \rho_{k}} \Phi_{\lambda}(u) \rightarrow 0 \text { as } k \rightarrow \infty \text { uniformly for } \lambda \in[1,2] .
$$

Then there exist $\lambda_{n} \rightarrow 1, u_{\lambda_{n}} \in Y_{n}$ such that

$$
\left(\Phi_{\lambda_{n} \mid Y_{n}}\right)^{\prime}\left(u_{\lambda_{n}}\right)=0, \Phi_{\lambda_{n}}\left(u_{\lambda_{n}}\right) \rightarrow c_{k} \in\left[d_{k}(2), b_{k}(1)\right] .
$$

Particularly, if ($u_{\lambda_{n}}$) has a convergent subsequence for every k, then Φ_{1} has infinitely many nontrivial critical points $u_{k} \in E \backslash\{0\}$ satisfying $\Phi_{1}\left(u_{k}\right) \rightarrow 0^{-}$ as $k \rightarrow \infty$.

For $m \in \mathbb{N}$, let $X_{m}=\mathbb{R} e_{m}$, where $\left(e_{m}\right)$ is the sequence defined in Section 2, then Y_{k} and Z_{k} are defined as above. In order to apply the above Variant Fountain Theorem for proving our result, we introduce the family of functionals

$$
\Phi_{\lambda}(u)=A(u)-\lambda B(u),(\lambda, u) \in[1,2] \times E
$$

where

$$
A(u)=\frac{1}{2}\left\|u^{+}\right\|^{2}, B(u)=\frac{1}{2}\left\|u^{-}\right\|^{2}+\int_{\mathbb{R}} F(x, u(x)) d x
$$

for $u=u^{-}+u^{0}+u^{+} \in E=E^{-} \oplus E^{0} \oplus E^{+}$.
Now, for $|u| \leq R$, we have by $\left(F_{3}\right)$ and the Mean Value Theorem

$$
\begin{equation*}
F(x, u)=\int_{0}^{1} f(x, s u) x d s \leq \frac{c}{2}|u|^{2} \leq \frac{c R}{2}|u| \tag{3.1}
\end{equation*}
$$

For $|u| \geq R$, set

$$
\left.\left.\psi(\xi)=F\left(x, \frac{R x}{\xi|u|}\right) \xi^{\mu}, \xi \in\right] 0,1\right]
$$

By $\left(F_{1}\right)$, it holds

$$
\begin{aligned}
\psi^{\prime}(\xi) & =-f\left(x, \frac{R u}{\xi|u|}\right) \frac{R u}{\xi^{2}|u|} \xi^{\mu}+\mu F\left(x, \frac{R u}{\xi|u|}\right) \xi^{\mu-1} \\
& =\xi^{\mu-1}\left[-f\left(x, \frac{R u}{\xi|u|}\right) \frac{R u}{\xi|u|}+\mu F\left(x, \frac{R u}{\xi|u|}\right)\right] \geq 0
\end{aligned}
$$

So ψ is nondecreasing in $] 0,1]$, and since $\xi=\frac{R}{|u|} \leq 1$, then

$$
\begin{equation*}
F(x, u)\left(\frac{R}{|u|}\right)^{\mu} \leq F\left(x, \frac{R u}{|u|}\right) . \tag{3.2}
\end{equation*}
$$

Combining (3.1) and (3.2) yields

$$
F(x, u)\left(\frac{R}{|u|}\right)^{\mu} \leq \frac{c}{2} R^{2}
$$

and then

$$
F(x, u) \leq \frac{c}{2} R^{2-\mu}|u|^{\mu}
$$

which with (3.1) gives

$$
\begin{equation*}
F(x, u) \leq c_{1}\left(|u|+|u|^{\mu}\right), \forall(x, u) \in \mathbb{R}^{2} . \tag{3.3}
\end{equation*}
$$

It follows from (2.4) and (3.3) that for any $\lambda \in[1,2]$ and $u \in E$

$$
\left|\Phi_{\lambda}(u)\right| \leq \frac{1}{2}\|u\|^{2}+2 c_{1}\left(\eta_{1}\|u\|+\eta_{\mu}\|u\|^{\mu}\right)
$$

which implies that Φ_{λ} maps bounded sets into bounded sets uniformly for $\lambda \in[1,2]$. Note that $F(x,-u)=F(x, u)$, so we have $\Phi_{\lambda}(-u)=\Phi_{\lambda}(u)$ for all $(\lambda, u) \in[1,2] \times E$. Thus the condition $\left(T_{1}\right)$ of Lemma 3.3 holds.

Lemma 3.4. Assume that $\left(\mathcal{A}_{\sigma}\right),\left(F_{1}\right)$ and $\left(F_{4}\right)$ hold. Then $B(u) \geq 0$ for all $u \in E$ and $B(u) \rightarrow+\infty$ as $\|u\| \rightarrow \infty$ on any finite-dimensional subspace of E.
Proof. By assumption $\left(F_{1}\right)$, it is clear that $B(u) \geq 0$ for all $u \in E$. We claim that for any finite-dimensional subspace F of E, there exists a constant $\epsilon_{0}>0$ such that

$$
\begin{equation*}
\operatorname{meas}\left(\left\{x \in \mathbb{R}:|u(x)| \geq \epsilon_{0}\|u\|\right\}\right) \geq \epsilon_{0}, \forall u \in F \backslash\{0\} \tag{3.4}
\end{equation*}
$$

where meas denotes the Lebesgue's measure in \mathbb{R}. If not, for any $k \in \mathbb{N}$, there exists $u_{k} \in F \backslash\{0\}$ such that

$$
\operatorname{meas}\left(\left\{x \in \mathbb{R}:\left|u_{k}(x)\right| \geq \frac{1}{k}\left\|u_{k}\right\|\right\}\right)<\frac{1}{k} .
$$

Let $v_{k}=\frac{u_{k}}{\left\|u_{k}\right\|} \in F$, then $\left\|v_{k}\right\|=1$ and

$$
\begin{equation*}
\operatorname{meas}\left(\left\{x \in \mathbb{R}:\left|v_{k}(x)\right| \geq \frac{1}{k}\right\}\right)<\frac{1}{k}, \quad \forall k \in \mathbb{N} . \tag{3.5}
\end{equation*}
$$

Since F is finite dimensional, then by taking a subsequence if necessary, we can assume that $v_{k} \rightarrow v_{0}$ in F for some $v_{0} \in F,\left\|v_{0}\right\|=1$. Recall that any two norms on F are equivalent, so one has

$$
\begin{equation*}
\int_{\mathbb{R}}\left|v_{k}(x)-v_{0}(x)\right| d x \rightarrow 0 \quad \text { as } \quad k \rightarrow \infty \tag{3.6}
\end{equation*}
$$

Since $\left\|v_{0}\right\|=1$, then $\left\|v_{0}\right\|_{L^{\infty}}=\sup _{t \in \mathbb{R}}\left|v_{0}(x)\right|>0$. Hence there exists a constant $\sigma_{0}>0$ such that

$$
\begin{equation*}
\operatorname{meas}\left(\left\{x \in \mathbb{R}:\left|v_{0}(x)\right| \geq \sigma_{0}\right\}\right) \geq \sigma_{0} \tag{3.7}
\end{equation*}
$$

For any $k \in \mathbb{N}$, let

$$
\Omega_{k}=\left\{x \in \mathbb{R}:\left|v_{k}(x)\right|<\frac{1}{k}\right\}, \Omega_{0}=\left\{x \in \mathbb{R}:\left|v_{0}(x)\right| \geq \sigma_{0}\right\}
$$

By (3.5) and (3.7), for any $k \in \mathbb{N}$ large enough, it holds

$$
\operatorname{meas}\left(\Omega_{0} \cap \Omega_{k}\right)=\operatorname{meas}\left(\Omega_{0} \backslash \Omega_{k}^{c}\right) \geq \operatorname{meas}\left(\Omega_{0}\right)-\operatorname{meas}\left(\Omega_{k}^{c}\right) \geq \sigma_{0}-\frac{1}{k} \geq \frac{\sigma_{0}}{2} .
$$

Then for k large enough

$$
\begin{aligned}
\int_{\mathbb{R}}\left|v_{k}(x)-v_{0}(x)\right| d x & \geq \int_{\Omega_{0} \cap \Omega_{k}}\left|v_{k}(x)-v_{0}(x)\right| d x \\
& \geq\left(\sigma_{0}-\frac{1}{k}\right) \operatorname{meas}\left(\Omega_{0} \cap \Omega_{k}\right) \geq \frac{\sigma_{0}^{2}}{4}>0
\end{aligned}
$$

which contradicts (3.6). Therefore (3.4) holds.
For the ϵ_{0} given in (3.4), denote

$$
\Omega_{u}=\left\{x \in \mathbb{R}:|u(x)| \geq \epsilon_{0}\|u\|\right\}, \forall u \in F \backslash\{0\}
$$

Then by (3.4), we obtain

$$
\begin{equation*}
\operatorname{meas}\left(\Omega_{u}\right) \geq \epsilon_{0}, \forall u \in F \backslash\{0\} \tag{3.8}
\end{equation*}
$$

By $\left(F_{4}\right)$, there exists a constant $R_{1}>R$ such that

$$
\begin{equation*}
F(x, u) \geq a \frac{|u|}{2}, \forall x \in \mathbb{R},|u| \geq R_{1} \tag{3.9}
\end{equation*}
$$

Let $u \in F$ such that $\|u\| \geq \frac{R_{1}}{\epsilon_{0}}$, we have

$$
\begin{equation*}
|u(x)| \geq \epsilon_{0}\|u\| \geq R_{1}, \forall x \in \Omega_{u} \tag{3.10}
\end{equation*}
$$

Combining (3.9) and (3.10) yields for all $u \in F,\|u\| \geq \frac{R_{1}}{\epsilon_{0}}$

$$
B(u) \geq \int_{\Omega_{u}} F(x, u) d x \geq \frac{a \epsilon_{0}}{2}\|u\| \operatorname{meas}\left(\Omega_{u}\right) \geq \frac{a \epsilon_{0}^{2}}{2}\|u\|
$$

This implies that $B(u) \rightarrow+\infty$ as $\|u\| \rightarrow \infty$ on any finite-dimensional subspace F of E. The proof of Lemma 3.4 is completed.

HOMOCLINIC SOLUTIONS FOR FOURTH-ORDER DIFFERENTIAL EQUATIONS 147
Lemma 3.5. Suppose that $\left(\mathcal{A}_{\sigma}\right)$ holds. Then for any $p \in[2, \infty]$

$$
l_{p}(k)=\sup _{u \in Z_{k},\|u\|=1}\|u\|_{L^{p}} \rightarrow 0 \text { as } k \rightarrow \infty .
$$

Proof. It is clear that $0<l_{p}(k+1) \leq l_{p}(k)$, so that $l_{p}(k) \rightarrow \bar{l}_{p}$ as $k \rightarrow \infty$. For every $k \geq 1$, there exists $u_{k} \in Z_{k}$ such that $\left\|u_{k}\right\|=1$ and $\left\|u_{k}\right\|_{L^{p}}>\frac{1}{2} l_{p}(k)$. For any $v \in E$, let $v=\sum_{i=1}^{\infty} v_{i} e_{i}$. By the Cauchy-Schwartz inequality, one has

$$
\left|\left\langle u_{k}, v\right\rangle\right|=\left|\left\langle u_{k}, \sum_{i=k+1}^{\infty} v_{i} e_{i}\right\rangle\right| \leq \sum_{i=k+1}^{\infty}\left|v_{i}\right|\left\|e_{i}\right\| \rightarrow 0 \text { as } k \rightarrow \infty
$$

which implies that $u_{k} \rightharpoonup 0$. Without loss of generality, Lemma 2.2 implies that $u_{k} \rightarrow 0$ in $L^{p}(\mathbb{R})$. Thus we have proved that $\bar{l}_{p}=0$. The proof of Lemma 3.5 is completed.

Lemma 3.6. Assume that $\left(\mathcal{A}_{\sigma}\right),\left(F_{2}\right)$ and $\left(F_{3}\right)$ are satisfied. Then there exist a constant $k_{0} \in \mathbb{N}$ and two sequences $0<r_{k}<\rho_{k} \rightarrow 0$ as $k \rightarrow \infty$ such that

$$
\begin{gather*}
a_{k}(\lambda)=\inf _{u \in Z_{k},\|u\|=\rho_{k}} \Phi_{\lambda}(u)>0, \forall k \geq k_{0}, \forall \lambda \in[1,2], \tag{3.11}\\
b_{k}(\lambda)=\max _{u \in Y_{k},\|u\|=r_{k}} \Phi_{\lambda}(u)<0, \forall k \geq k_{0}, \forall \lambda \in[1,2], \tag{3.12}\\
c_{k}(\lambda)=\inf _{u \in Z_{k},\|u\| \leq \rho_{k}} \Phi_{\lambda}(u) \rightarrow 0 \text { as } k \rightarrow \infty \text { uniformly for } \lambda \in[1,2] . \tag{3.13}
\end{gather*}
$$

Proof. For any $u \in E$ with $\|u\| \leq \frac{R}{\eta_{\infty}}$, (2.4) implies

$$
\begin{equation*}
\|u\|_{L^{\infty}} \leq R \tag{3.14}
\end{equation*}
$$

Note that $Z_{k} \subset E^{+}$for any $k \geq k^{+}+1$ with k^{+}is defined in Section 2. It follows from (3.1) and (3.14) that for $k \geq k^{+}+1$ and $\|u\| \leq \frac{R}{\eta_{\infty}}$, one has

$$
\begin{align*}
\Phi_{\lambda}(u) & \geq \frac{1}{2}\|u\|^{2}-2 \int_{\mathbb{R}} \frac{c R}{2}|u| d x \tag{3.15}\\
& \geq \frac{1}{2}\|u\|^{2}-c R\|u\|_{L^{1}}, \forall \lambda \in[1,2], \forall u \in Z_{k}
\end{align*}
$$

Let

$$
\begin{equation*}
M_{k}=l_{1}(k)=\sup _{u \in Z_{k} \backslash\{0\}} \frac{\|u\|_{L^{1}}}{\|u\|}, \forall k \in \mathbb{N} . \tag{3.16}
\end{equation*}
$$

Then by Lemma 3.5, we have

$$
\begin{equation*}
M_{k} \rightarrow 0 \text { as } k \rightarrow \infty . \tag{3.17}
\end{equation*}
$$

Combining (3.15), (3.16) yields

$$
\begin{equation*}
\Phi_{\lambda}(u) \geq \frac{1}{2}\|u\|^{2}-c R M_{k}\|u\| \tag{3.18}
\end{equation*}
$$

for all $k \geq k^{+}+1$ and $u \in Z_{k}$ with $\|u\| \leq \frac{R}{\eta_{\infty}}$. For any $k \geq k^{+}+1$, let $\rho_{k}=4 c R M_{k}$. Then by (3.17), there exists an integer $k_{0} \geq k^{+}+1$ such that

$$
\begin{equation*}
\rho_{k} \leq \frac{R}{\eta_{\infty}}, \forall k \geq k_{0} \tag{3.19}
\end{equation*}
$$

It follows from (3.18) and (3.19) that for all $k \geq k_{0}$

$$
a_{k}(\lambda)=\inf _{u \in Z_{k},\|u\|=\rho_{k}} \Phi_{\lambda}(u) \geq \frac{1}{2} \rho_{k}^{2}-c R M_{k} \rho_{k}=\frac{1}{4} \rho_{k}^{2}>0 .
$$

Hence (3.11) is satisfied.
Now, for any $k \geq k_{0}$, (3.18) implies that for any $u \in Z_{k}$ with $\|u\| \leq \rho_{k}$

$$
\Phi_{\lambda}(u) \geq-c R M_{k} \rho_{k}
$$

Since $\Phi_{\lambda}(0)=0$, we deduce that

$$
0 \geq \inf _{u \in Z_{k},\|u\| \leq \rho_{k}} \Phi_{\lambda}(u) \geq-c R M_{k} \rho_{k}, \forall k \geq k_{0}
$$

which implies that (3.13) is satisfied.
It remains to prove (3.12). Since the two norms $\|\cdot\|_{L^{2}}$ and $\|\cdot\|$ are equivalent in finite-dimensional space Y_{k}, then for any $k \in \mathbb{N}$, there exists a constant $d_{k}>0$ such that

$$
\begin{equation*}
\|u\|_{L^{2}} \geq d_{k}\|u\|, \quad \forall u \in Y_{k} \tag{3.20}
\end{equation*}
$$

By $\left(F_{2}\right)$, for any $k \in \mathbb{N}$, there exists a constant $\epsilon_{k}>0$ such that

$$
\begin{equation*}
F(x, u) \geq \frac{|u|^{2}}{d_{k}^{2}}, \forall|u| \leq \epsilon_{k} \tag{3.21}
\end{equation*}
$$

For any $k \in \mathbb{N}$ and $u \in E$ with $\|u\| \leq \frac{\epsilon_{k}}{\eta_{\infty}}$, one has by (2.4), $\|u\|_{L^{\infty}} \leq \epsilon_{k}$. Consequently, for all $k \in \mathbb{N}$ and $u \in Y_{k}$ with $\|u\| \leq \frac{\epsilon_{k}}{\eta_{\infty}}$, it follows from (3.20) and (3.21)

$$
\begin{equation*}
\Phi_{\lambda}(u) \leq \frac{1}{2}\left\|u^{+}\right\|^{2}-\int_{\mathbb{R}} \frac{|u|^{2}}{d_{k}^{2}} d x \leq-\frac{1}{2}\|u\|^{2}, \forall \lambda \in[1,2] . \tag{3.22}
\end{equation*}
$$

For any $k \in \mathbb{N}$, choose $0<r_{k}<\min \left\{\rho_{k}, \frac{\epsilon_{k}}{\eta_{\infty}}\right\}$, then (3.22) implies

$$
b_{k}(\lambda)=\max _{u \in Y_{k},\|u\|=r_{k}} \Phi_{\lambda}(u) \leq-\frac{r_{k}^{2}}{2}<0, \forall k \in \mathbb{N} .
$$

The proof of Lemma 3.6 is completed.
It follows from above that there exists a positive integer k_{0} such that for all $k \geq k_{0}$, all the conditions of Lemma 3.3 are satisfied, therefore for all $k \geq k_{0}$, there exist sequences $0<\lambda_{j} \rightarrow 1, u_{j} \in Y_{j}$ such that

$$
\begin{equation*}
\left(f_{\lambda_{j} \mid Y_{j}}\right)^{\prime}\left(u_{\lambda_{j}}\right)=0, f_{\lambda_{j}}\left(u_{\lambda_{j}}\right) \rightarrow \theta_{k} \in\left[d_{k}(2), b_{k}(1)\right] . \tag{3.23}
\end{equation*}
$$

Lemma 3.7. Under the assumptions of Theorem 3.1, the sequence $\left(u_{\lambda_{j}}\right)$ is bounded in E.

Proof. Set for $j \in \mathbb{N}$

$$
\Lambda_{j}=\left\{x \in \mathbb{R}:\left|u_{\lambda_{j}}(x)\right| \geq R_{1}\right\}
$$

where R_{1} is defined in (3.9) and note that by $\left(F_{1}\right), f(x, u) u \leq 2 F(x, u)$, $\forall(x, u) \in \mathbb{R}^{2}$. Hence it holds from $\left(F_{1}\right)$, (3.9) and (3.23) that

$$
\begin{aligned}
-\Phi_{\lambda_{j}}\left(u_{\lambda_{j}}\right) & =\frac{1}{2}\left(\Phi_{\lambda_{j} \mid Y_{j}}\right)^{\prime}\left(u_{\lambda_{j}}\right) u_{\lambda_{j}}-\Phi_{\lambda_{j}}\left(u_{\lambda_{j}}\right) \\
& =\lambda_{j} \int_{\mathbb{R}}\left[F\left(x, u_{\lambda_{j}}\right)-\frac{1}{2} f\left(x, u_{\lambda_{j}}\right) u_{\lambda_{j}}\right] d x \\
& \geq \lambda_{j} \int_{\Lambda_{j}}\left[F\left(x, u_{\lambda_{j}}\right)-\frac{1}{2} f\left(x, u_{\lambda_{j}}\right) u_{\lambda_{j}}\right] d x \\
& \geq \lambda_{j} \frac{2-\mu}{2} \int_{\Lambda_{j}} F\left(x, u_{\lambda_{j}}\right) d x \\
& \geq \lambda_{j} \frac{a \lambda_{j}(2-\mu)}{4} \int_{\Lambda_{j}}\left|u_{\lambda_{j}}\right| d x, \forall j \in \mathbb{N} .
\end{aligned}
$$

It follows from (3.23) that

$$
\begin{equation*}
\int_{\Lambda_{j}}\left|u_{\lambda_{j}}\right| d x \leq c_{2}, \forall j \in \mathbb{N} . \tag{3.24}
\end{equation*}
$$

For any $j \in \mathbb{N}$, let $\chi_{j}: \mathbb{R} \rightarrow \mathbb{R}$ be the indicator of Λ_{j}, that is

$$
\chi_{j}(x)= \begin{cases}1 & \text { if } t \in \Lambda_{j}, \\ 0 & \text { if } t \in \Lambda_{j}^{c} .\end{cases}
$$

Hence by the definition of Λ_{j} and (3.24), we have

$$
\left\|\left(1-\chi_{j}\right) u_{\lambda_{j}}\right\|_{L^{\infty}} \leq R_{1} \text { and }\left\|\chi_{j} u_{\lambda_{j}}\right\|_{L^{1}} \leq c_{2}, \forall j \in \mathbb{N}
$$

Therefore from the equivalence of any two norms on finite-dimensional space $E^{-} \oplus E^{0}$, it holds that

$$
\begin{aligned}
\left\|u_{\lambda_{j}}^{-}+u_{\lambda_{j}}^{0}\right\|_{L^{2}}^{2} & =\left\langle u_{j}^{-}+u_{j}^{0}, u_{j}\right\rangle_{L^{2}} \\
& =\left\langle u_{\lambda_{j}}^{-}+u_{\lambda_{j}}^{0},\left(1-\chi_{j}\right) u_{\lambda_{j}}\right\rangle_{L^{2}}+\left\langle u_{\lambda_{j}}^{-}+u_{\lambda_{j}}^{0}, \chi_{j} u_{\lambda_{j}}\right\rangle_{L^{2}} \\
& \leq\left\|u_{\lambda_{j}}^{-}+u_{\lambda_{j}}^{0}\right\|_{L^{1}}\left\|\left(1-\chi_{j}\right) u_{\lambda_{j}}\right\|_{L^{\infty}}+\left\|u_{\lambda_{j}}^{-}+u_{\lambda_{j}}^{0}\right\|_{L^{\infty}}\left\|\chi_{j} u_{\lambda_{j}}\right\|_{L^{1}} \\
& \leq\left(c_{3}\left\|\left(1-\chi_{j}\right) u_{\lambda_{j}}\right\|_{L^{\infty}}+c_{4}\left\|\chi_{j} u_{\lambda_{j}}\right\|_{L^{1}}\right)\left\|u_{\lambda_{j}}^{-}+u_{\lambda_{j}}^{0}\right\|_{L^{2}} \\
& \leq\left(c_{3} R_{1}+c_{4} c_{2}\right)\left\|u_{\lambda_{j}}^{-}+u_{\lambda_{j}}^{0}\right\|_{L^{2}}, \forall j \in \mathbb{N} .
\end{aligned}
$$

Consequently

$$
\left\|u_{\lambda_{j}}^{-}+u_{\lambda_{j}}^{0}\right\|_{L^{2}} \leq c_{3} R_{1}+c_{4} c_{2}, \forall j \in \mathbb{N}
$$

which together with the fact that $E^{-} \oplus E^{0}$ is of finite-dimensional, implies that

$$
\begin{equation*}
\left\|u_{\lambda_{j}}^{-}+u_{\lambda_{j}}^{0}\right\| \leq c_{5}, \forall j \in \mathbb{N} . \tag{3.25}
\end{equation*}
$$

By noting that

$$
\left\|u_{\lambda_{j}}^{+}\right\|^{2}=2 \Phi_{\lambda_{j}}\left(u_{\lambda_{j}}\right)+\lambda_{j}\left\|u_{\lambda_{j}}^{-}\right\|^{2}+2 \lambda_{j} \int_{\mathbb{R}} F\left(x, u_{\lambda_{j}}\right) d x, \forall j \in \mathbb{N},
$$

we deduce from (2.4), (3.3), (3.23) and (3.25) that

$$
\begin{aligned}
\left\|u_{\lambda_{j}}\right\|^{2} & =\left\|u_{\lambda_{j}}^{-}+u_{\lambda_{j}}^{0}\right\|^{2}+\left\|u_{\lambda_{j}}^{+}\right\|^{2} \\
& =\left\|u_{\lambda_{j}}^{-}+u_{\lambda_{j}}^{0}\right\|^{2}+2 f_{\lambda_{j}}\left(u_{\lambda_{j}}\right)+\lambda_{j}\left\|u_{\lambda_{j}}^{-}\right\|^{2}+2 \lambda_{j} \int_{\mathbb{R}} F\left(x, u_{\lambda_{j}}\right) d x \\
& \leq c_{6}+c_{8}\left(\left\|u_{\lambda_{j}}\right\|+\left\|u_{\lambda_{j}}\right\|^{\mu}\right), \forall j \in \mathbb{N},
\end{aligned}
$$

and since $\mu<2$ this implies that $\left(u_{\lambda_{j}}\right)$ is bounded in E. The proof of Lemma 3.7 is completed.

It remains to prove that $\left(u_{\lambda_{j}}\right)$ has a strongly convergent subsequence in E. Since $E^{-} \oplus E^{0}$ is finite-dimensional, then by Lemmas 2.2, 3.5, we can assume, without loss of generality, that

$$
\begin{equation*}
u_{\lambda_{j}}^{-} \rightarrow u^{-}, u_{\lambda_{j}}^{0} \rightarrow u^{0}, u_{\lambda_{j}}^{+} \rightharpoonup u^{+} \text {and } u_{\lambda_{j}} \rightharpoonup u \text { as } j \rightarrow \infty \tag{3.26}
\end{equation*}
$$

for some $u=u^{-}+u^{0}+u^{+} \in E^{-} \oplus E^{0} \oplus E^{+}$. In virtue of the Riez Representation Theorem, $\left(\Phi_{\lambda_{j} \mid Y_{j}}\right)^{\prime}: Y_{j} \rightarrow Y_{j}^{*}$ and $\varphi^{\prime}: E \rightarrow E^{*}$ can be viewed as $\left(\Phi_{\lambda_{j} \mid Y_{j}}\right)^{\prime}:$ $Y_{j} \rightarrow Y_{j}$ and $\varphi^{\prime}: E \rightarrow E$, where Y_{j}^{*} and E^{*} are the dual spaces of Y_{j} and E respectively. Set $P_{j}: E \rightarrow Y_{j}$ be the orthogonal projection for all $j \in \mathbb{N}$, we have

$$
0=\left(\Phi_{\lambda_{j} \mid Y_{j}}\right)^{\prime}\left(u_{\lambda_{j}}\right)=u_{\lambda_{j}}^{+}-\lambda_{j} u_{\lambda_{j}}^{-}-\lambda_{j} P_{j} \varphi^{\prime}\left(u_{\lambda_{j}}\right), \forall j \in \mathbb{N}
$$

that is

$$
\begin{equation*}
u_{\lambda_{j}}^{+}=\lambda_{j}\left[u_{\lambda_{j}}^{-}+P_{j} \varphi^{\prime}\left(u_{\lambda_{j}}\right)\right], \forall j \in \mathbb{N} . \tag{3.27}
\end{equation*}
$$

Since $\varphi^{\prime}: E \rightarrow E$ is compact, then without loss of generality, (3.26) implies that the right-hand side of (3.27) converges strongly in E and then $u_{\lambda_{j}}^{+} \rightarrow u^{+}$ in E. This with (3.26) implies $u_{\lambda_{j}} \rightarrow u$ in E.

Consequently, by Lemma 3.3, the functional $\Phi_{1}=\Phi$ possesses infinitely many nontrivial critical points, which implies that (\mathcal{F}) has infinitely many nontrivial homoclinic orbits. The proof of Theorem 3.1 is completed.

4. Superquadratic case

In this Section, we are interested in the existence of infinitely many homoclinic orbits of (\mathcal{F}) when the potential $F(x, u)$ is superquadratic at infinity with respect to u. More precisely, we make the following assumptions:

$$
\begin{equation*}
\frac{F(x, u)}{|u|^{2}} \rightarrow+\infty \text { as }|u| \rightarrow \infty, \text { uniformly in } x \in \mathbb{R} \tag{5}
\end{equation*}
$$

$$
\begin{equation*}
f(x, u) u \geq 2 F(x, u) \geq 0, \forall(x, u) \in \mathbb{R}^{2} \tag{6}
\end{equation*}
$$

$\left(F_{7}\right)$

$$
\frac{|f(x, u)|}{|u|} \rightarrow 0 \text { as }|u| \rightarrow 0, \text { uniformly in } x \in \mathbb{R}
$$

(F_{8}) there exist constants $\alpha>0$ and $a>0$ such that

$$
|f(x, u)| \leq a\left(|u|^{\alpha}+1\right), \forall(x, u) \in \mathbb{R}^{2} ;
$$

$\left(F_{9}\right)$ there exist constants $\beta \geq \alpha, \beta>1, b>0$ and $r>0$ such that

$$
f(x, u) u-2 F(x, u) \geq b|u|^{\beta}, \forall x \in \mathbb{R}, \forall|u| \geq r .
$$

Our main results in this Section read as follows:
Theorem 4.1. Assume that $\left(\mathcal{A}_{\sigma}\right)$ and $\left(F_{5}\right)-\left(F_{9}\right)$ hold. Then the fourth-order differential equation (\mathcal{F}) possesses at least one nontrivial homoclinic solution.

Theorem 4.2. Assume that $\left(\mathcal{A}_{\sigma}\right)$ and $\left(F_{5}\right)-\left(F_{9}\right)$ hold and $F(x, u)$ is even in $u \in \mathbb{R}$. Then (\mathcal{F}) has infinitely many distinct homoclinic solutions.

Example 4.3. Let

$$
F(x, u)=|u|^{2} \ln \left(1+|u|^{2}\right) .
$$

A straightforward computation shows that F satisfies Theorems 4.1 and 4.2.
Now we are going to establish the corresponding variational framework to obtain homoclinic solutions for (\mathcal{F}). To this end, define the functional $\Phi: E \rightarrow$ \mathbb{R} as in Section 3. It is well known that under the assumptions of Theorem 4.1, the functional Φ is continuously differentiable on E and its critical points on E are exactly the homoclinic solutions of the equation (\mathcal{F}). For the existence and multiplicity of homoclinic solutions of (\mathcal{F}), we will appeal to the following abstract critical lemmas. Let E be a Banach space and $\Phi \in C^{1}(E, \mathbb{R})$. As usual we say Φ satisfies the Palais-Smale condition ((PS) for short) if any sequence $\left(u_{k}\right) \subset E$ for which $\left(\Phi\left(u_{k}\right)\right)$ is bounded and $\Phi^{\prime}\left(u_{k}\right) \rightarrow 0$ as $k \rightarrow \infty$ possesses a convergent subsequence.

Lemma 4.4 (Generalized Mountain Pass Theorem [13]). Let E an infinite dimensional Banach space such that $E=V \oplus X$, where V is finite dimensional. If $\Phi \in C^{1}(E, \mathbb{R})$ and the following conditions hold:
$\left(\Phi_{1}\right) \Phi$ satisfies the $(P S)$ condition;
$\left(\Phi_{2}\right)$ there are constants $\rho, \delta>0$ such that

$$
\Phi_{\mid \partial B_{\rho} \cap X} \geq \delta ;
$$

where $\partial B_{\rho}=\{u \in E:\|u\|=\rho\}$;
$\left(\Phi_{3}\right)$ there are constants $r>\rho, M>0$ and $e \in X$ with $\|e\|=1$ such that

$$
\Phi_{\mid \partial \Lambda} \leq 0 \text { and } \Phi_{\mid \Lambda} \leq M,
$$

where

$$
\Lambda=\left(B_{r} \cap V\right) \oplus\{s e: 0 \leq s \leq r\} .
$$

Then Φ has a critical point u with $\Phi(u) \geq \delta$.

Lemma 4.5 (Symmetric Mountain Pass Theorem [13]). Let E be an infinite dimensional Banach space such that $E=V \oplus X$, where V is finite dimensional. If $\Phi \in C^{1}(E, \mathbb{R})$ is even and satisfies $\Phi(0)=0,\left(\Phi_{1}\right),\left(\Phi_{2}\right)$ and
$\left(\Phi_{3}^{\prime}\right)$ for each finite dimensional subspace $\tilde{E} \subset E$, there is an $R=R(\tilde{E})>0$ such that $\Phi \leq 0$ on $\tilde{E} \backslash B_{R}$.

Then Φ possesses an unbounded sequence of critical values.
In the following, $c_{n}, n \in \mathbb{N}$ denote some various constants.
Lemma 4.6. If $\left(\mathcal{A}_{\sigma}\right),\left(F_{6}\right),\left(F_{8}\right)$ and $\left(F_{9}\right)$ hold, then Φ satisfies the $(P S)$ condition.

Proof. Let $\left(u_{k}\right) \subset E$ be a $(P S)$ sequence, i.e., there exists a constant $M>0$ such that

$$
\begin{equation*}
\left|\Phi\left(u_{k}\right)\right| \leq M, \forall k \in \mathbb{N} \text { and } \Phi^{\prime}\left(u_{k}\right) \rightarrow 0 \text { as } k \rightarrow \infty \tag{4.1}
\end{equation*}
$$

We claim that $\left(u_{k}\right)$ is bounded. If not, passing to a subsequence if necessary, we may assume that $\left\|u_{k}\right\| \rightarrow \infty$ as $k \rightarrow \infty$. By $\left(F_{6}\right)$ and $\left(F_{9}\right)$, we have

$$
\begin{align*}
2 \Phi\left(u_{k}\right)-\Phi^{\prime}\left(u_{k}\right) u_{k} & =\int_{\mathbb{R}}\left[f\left(x, u_{k}\right) u_{k}-2 F\left(x, u_{k}\right)\right] d x \tag{4.2}\\
& \geq b \int_{\left\{t \in \mathbb{R}:\left|u_{k}(x)\right| \geq r\right\}}\left|u_{k}(x)\right|^{\beta} d x
\end{align*}
$$

for all positive integer k, which implies that

$$
\begin{equation*}
\frac{1}{\left\|u_{k}\right\|} \int_{\left\{t \in \mathbb{R}:\left|u_{k}(x)\right| \geq r\right\}}\left|u_{k}(x)\right|^{\beta} d x \rightarrow 0 \tag{4.3}
\end{equation*}
$$

as $k \rightarrow \infty$. Let

$$
v_{k}(x)=\left\{\begin{array}{cl}
u_{k}(x) & \text { if }\left|u_{k}(x)\right| \leq r \tag{4.4}\\
0 & \text { if }\left|u_{k}(x)\right|>r
\end{array}\right.
$$

and

$$
\begin{equation*}
w_{k}(x)=u_{k}(x)-v_{k}(x) \tag{4.5}
\end{equation*}
$$

for all positive integer k and all $x \in \mathbb{R}$. By (4.2) and (4.5), we get

$$
\begin{equation*}
c_{1}\left(1+\left\|u_{k}\right\|\right) \geq b\left\|w_{k}\right\|_{L^{\beta}}^{\beta} \tag{4.6}
\end{equation*}
$$

for all positive integer k. It follows from Hölder's inequality, (4.4), (4.5) and the equivalence of the norms on the finite dimensional subspace $E^{-} \oplus E^{0}$ that

$$
\begin{align*}
\left\|u_{k}^{-}+u_{k}^{0}\right\|_{L^{2}}^{2} & =\left\langle u_{k}^{-}+u_{k}^{0}, v_{k}\right\rangle_{L^{2}}+\left\langle u_{k}^{-}+u_{k}^{0}, w_{k}\right\rangle_{L^{2}} \\
& \leq\left\|u_{k}^{-}+u_{k}^{0}\right\|_{L^{1}}\left\|v_{k}\right\|_{L^{\infty}}+\left\|u_{k}^{-}+u_{k}^{0}\right\|_{L^{\beta^{\prime}}}\left\|w_{k}\right\|_{L^{\beta}} \tag{4.7}\\
& \leq c_{2}\left\|u_{k}^{-}+u_{k}^{0}\right\|_{L^{2}}\left(1+\left\|w_{k}\right\|_{L^{\beta}}\right)
\end{align*}
$$

for all positive integer k, where $\beta^{\prime}=\frac{\beta}{\beta-1}(\beta>1)$ is the Hölder's conjugate of β.

From the equivalence of the norms on the finite dimensional subspace $E^{-} \oplus$ E^{0}, (4.6) and (4.7) we obtain

$$
\left\|u_{k}^{-}+u_{k}^{0}\right\| \leq c_{3}\left\|u_{k}^{-}+u_{k}^{0}\right\|_{L^{2}} \leq c_{4}\left(1+\left\|w_{k}\right\|_{L^{\beta}}\right) \leq c_{5}\left(1+\left\|u_{k}\right\|^{\frac{1}{\beta}}\right)
$$

for all positive integer k, which implies that

$$
\begin{equation*}
\frac{\left\|u_{k}^{-}+u_{k}^{0}\right\|}{\left\|u_{k}\right\|} \rightarrow 0 \tag{4.8}
\end{equation*}
$$

as $k \rightarrow \infty$. By $\left(F_{8}\right)$ and (2.4), one sees that

$$
\begin{aligned}
\Phi^{\prime}\left(u_{k}\right) u_{k}^{+} \geq & \left\|u_{k}^{+}\right\|^{2}-\int_{\mathbb{R}}\left|f\left(x, u_{k}\right)\right|\left|u_{k}^{+}\right| d x \\
\geq & \left\|u_{k}^{+}\right\|^{2}-a \eta_{\infty}\left\|u_{k}^{+}\right\| r^{\alpha-\beta} \int_{\left\{t \in \mathbb{R}:\left|u_{k}(x)\right| \geq r\right\}}\left|u_{k}\right|^{\beta} d x \\
& -a r^{\alpha} \eta_{1}\left\|u_{k}^{+}\right\|-a \eta_{1}\left\|u_{k}^{+}\right\|
\end{aligned}
$$

which, by (4.3), implies

$$
\begin{equation*}
\frac{\left\|u_{k}^{+}\right\|}{\left\|u_{k}\right\|} \rightarrow 0 \tag{4.9}
\end{equation*}
$$

as $k \rightarrow \infty$. Hence by (4.8) and (4.9), we obtain

$$
1=\frac{\left\|u_{k}\right\|}{\left\|u_{k}\right\|} \leq \frac{\left\|u_{k}^{-}+u_{k}^{0}\right\|+\left\|u_{k}^{+}\right\|}{\left\|u_{k}\right\|} \rightarrow 0
$$

as $k \rightarrow \infty$, which is a contradiction. Hence (u_{k}) must be bounded. Moreover we have

$$
\left\|u_{k}^{+}-u^{+}\right\|^{2}=\left(\Phi^{\prime}\left(u_{k}\right)-\Phi^{\prime}(u)\right)\left(u_{k}^{+}-u^{+}\right)+\left(\varphi^{\prime}\left(u_{k}\right)-\varphi^{\prime}(u)\right)\left(u_{k}^{+}-u^{+}\right)
$$

Going to a subsequence if necessary, we may assume, by using Lemma 2.2, that $u_{k} \rightharpoonup u$ weakly in E and

$$
\begin{equation*}
u_{k} \rightarrow u \text { in both } L^{2}(\mathbb{R}) \text { and } L^{\infty}(\mathbb{R}) \text { as } k \rightarrow \infty \tag{4.10}
\end{equation*}
$$

Since φ^{\prime} is continuous, we deduce that $\varphi^{\prime}\left(u_{k}\right) \rightarrow \varphi^{\prime}(u)$ and therefore $u_{k}^{+} \rightarrow u^{+}$ in E. From (4.10) and the equivalence of the norms on the finite dimensional subspace $E^{-} \oplus E^{0}$ we obtain that $u_{k}^{0} \rightarrow u^{0}$ and $u_{k}^{-} \rightarrow u^{-}$in E as $k \rightarrow \infty$. Hence $\left(u_{k}\right)$ has a convergent subsequence, which shows that the $(P S)$ condition holds. The proof of Lemma 4.6 is achieved.

Lemma 4.7. Assume that $\left(\mathcal{A}_{\sigma}\right),\left(F_{6}\right)$ and $\left(F_{7}\right)$ are satisfied. Then there are constants $\rho>0$ and $\delta>0$ such that

$$
\Phi_{\mid S} \geq \delta,
$$

where

$$
S=\left\{u \in E^{+}:\|u\|=\rho\right\} .
$$

Proof. By $\left(F_{7}\right)$, for all $\epsilon>0$, there exists $\nu>0$ such that

$$
|f(x, u)| \leq \epsilon|u|, \forall x \in \mathbb{R}, \forall|u| \leq \nu
$$

which with $\left(F_{6}\right)$ and the Mean Value Theorem gives

$$
F(x, u)=\int_{0}^{1} f(x, s u) u d s \leq \frac{\epsilon}{2}|u|^{2}, \forall x \in \mathbb{R}, \forall|u| \leq \nu
$$

Choose $\epsilon=\left(2 \eta_{2}^{2}\right)^{-1}$ and take $\rho=\frac{\nu}{\eta_{\infty}}, \delta=\frac{\rho^{2}}{4}$. By (2.4), we get

$$
\Phi(u) \geq \frac{1}{2}\|u\|^{2}-\frac{\epsilon}{2} \int_{\mathbb{R}}|u(x)|^{2} d x=\frac{1}{4}\|u\|^{2}=\frac{\rho^{2}}{4}=\delta
$$

for all $u \in S$. The proof of Lemma 4.7 is completed.

Proof of Theorem 4.1

Lemma 4.8. Assume that $\left(\mathcal{A}_{\sigma}\right),\left(F_{5}\right),\left(F_{6}\right)$ and $\left(F_{9}\right)$ are satisfied. Let $e \in E^{+}$ with $\|e\|=1$. Then there exist $r_{1}, r_{2}>0$ such that

$$
\Phi(u) \leq 0, \forall u \in \partial \Lambda
$$

where

$$
\Lambda=\left\{s e: 0 \leq s \leq r_{1}\right\} \oplus\left\{u \in E^{-} \oplus E^{0}:\|u\| \leq r_{2}\right\}
$$

Proof. Let $e \in E^{+}$with $\|e\|=1$ and $F=\operatorname{span}\{e\} \oplus E^{-} \oplus E^{0}$. By the proof of Lemma 3.4, there exists a constant $\epsilon_{0}>0$ such that

$$
\begin{equation*}
\operatorname{meas}\left(\left\{x \in \mathbb{R}:|u(x)| \geq \epsilon_{0}\|u\|\right\}\right) \geq \epsilon_{0}, \forall u \in F \backslash\{0\} \tag{4.11}
\end{equation*}
$$

For $u=u^{-}+u^{0}+u^{+} \in F$, let

$$
\Omega_{u}=\left\{x \in \mathbb{R}:|u(x)| \geq \epsilon_{0}\|u\|\right\}
$$

By $\left(F_{5}\right)$, for $d=\frac{1}{2 \epsilon_{0}^{3}}>0$, there exists $R_{1}>0$ such that

$$
F(x, u) \geq d|u|^{2}, \forall x \in \mathbb{R}, \forall|u| \geq R_{1}
$$

Hence one has

$$
\begin{equation*}
F(x, u(x)) \geq d|u(x)|^{2} \geq d \epsilon_{0}^{2}\|u\|^{2} \tag{4.12}
\end{equation*}
$$

for all $u \in F$ with $\|u\| \geq \frac{R_{1}}{\epsilon_{0}}$ and $x \in \Omega_{u}$. It follows from (F_{9}), (4.11) and (4.12) that

$$
\begin{align*}
\Phi(u) & \leq \frac{1}{2}\left\|u^{+}\right\|^{2}-\int_{\Omega_{u}} F(x, u(x)) d x \\
& \leq \frac{1}{2}\left\|u^{+}\right\|^{2}-d \epsilon_{0}^{2}\|u\|^{2} \operatorname{meas}\left(\Omega_{u}\right) \tag{4.13}\\
& \leq \frac{1}{2}\left\|u^{+}\right\|^{2}-\frac{1}{2}\|u\|^{2} \leq 0
\end{align*}
$$

for all $u \in F$ with $\|u\| \geq \frac{R_{1}}{\epsilon_{0}}$. Let $r_{1}>0$ and denote

$$
\Lambda=\left\{s e: 0 \leq s \leq r_{1}\right\} \oplus\left\{u \in E^{-} \oplus E^{0}:\|u\| \leq r_{1}\right\} .
$$

Then we have

$$
\partial \Lambda=\Lambda_{1} \cup \Lambda_{2} \cup \Lambda_{3},
$$

where

$$
\begin{gathered}
\Lambda_{1}=\left\{u \in E^{-} \oplus E^{0}:\|u\| \leq r_{1}\right\} \\
\Lambda_{2}=r_{1} e+\left\{u \in E^{-} \oplus E^{0}:\|u\| \leq r_{1}\right\} \\
\Lambda_{3}=\left\{s e: 0 \leq s \leq r_{1}\right\} \oplus\left\{u \in E^{-} \oplus E^{0}:\|u\|=r_{1}\right\}
\end{gathered}
$$

By (4.13), one has

$$
\Phi(u) \leq 0, \forall u \in \Lambda_{2} \cup \Lambda_{3}
$$

for all $r_{1} \geq \frac{R}{\epsilon_{0}}$. From $\left(F_{6}\right)$, we have

$$
\Phi(u) \leq 0, \forall u \in E^{-} \oplus E^{0},
$$

which implies that

$$
\Phi(u) \leq 0, \forall u \in \Lambda_{1} .
$$

Hence we have

$$
\Phi(u) \leq 0, \forall u \in \partial \Lambda,
$$

for all $r_{1}>\max \left\{\rho, \frac{R_{1}}{\epsilon_{0}}\right\}$, where ρ is defined in Lemma 4.7, which completes the proof of Lemma 4.8.

By Lemma $4.4, \Phi$ has a critical point u satisfying $\Phi(u) \geq \delta>0$ where δ is given by Lemma 4.8. Since $\Phi(0)=0$, then u is nontrivial and (\mathcal{F}) possesses a nontrivial homoclinic solution. The proof of Theorem 4.1 is achieved.

Proof of Theorem 4.2

We have $\Phi(0)=0$ and since $F(x, u)$ is even with respect to the second variable, then Φ is even. The assumptions $\left(\Phi_{1}\right),\left(\Phi_{2}\right)$ are proved above. Let us prove $\left(\Phi_{3}^{\prime}\right)$. Let $\tilde{E} \subset E$ be a finite dimensional subspace of E, there exists $m \geq 1$ such that $\tilde{E} \subset E^{-} \oplus E^{0} \oplus \operatorname{span}\left\{w_{1}, \ldots, w_{m}\right\}=X^{m}$, where $w_{k}=e_{\bar{k}+k}$, $k \geq 1$. Replacing the subspace $F=\operatorname{span}\{e\} \oplus E^{-} \oplus E^{0}$, introduced in the proof of Lemma 4.8, by the subspace X^{m} and following the same steps, we obtain $R_{m}>0$ such that

$$
\Phi(u) \leq \frac{1}{2}\left\|u^{+}\right\|^{2}-\frac{1}{2}\|u\|^{2} \leq 0, \forall u \in X^{m},\|u\| \geq R_{m}
$$

Hence $\left(\Phi_{3}^{\prime}\right)$ is verified. Therefore, by Lemma 4.5, Φ possesses an unbounded sequence of critical points. Hence (\mathcal{F}) possesses infinitely may homoclinic solutions. The proof of Theorem 4.2 is completed.

5. Local conditions

In this Section, we are interested in a general case where the potential $F(x, u)$ satisfies only locally conditions near the origin with respect to u and do not satisfy any additional hypotheses at infinity. More precisely, we present the following assumptions:
$\left(F_{10}\right)$ There exist constants $r, c>0$ and $\left.\nu \in\right] 0,1[$ such that

$$
|f(x, u)| \leq c|u|^{\nu}, \forall x \in \mathbb{R},|u| \leq r
$$

$\left(F_{11}\right)$ There exists $\left.\left.\rho \in\right] 0, r\right]$ such that

$$
F(x,-u)=F(x, u), \text { and } F(x, u) \geq 0, \forall x \in \mathbb{R}|u| \leq \rho ;
$$

$\left(F_{12}\right) \lim _{|u| \rightarrow 0} \frac{|F(x, u)|}{|u|^{2}}=+\infty$, uniformly for all $x \in \mathbb{R}$.
Our main result in this Section reads as follows.
Theorem 5.1. Assume that $\left(\mathcal{A}_{\sigma}\right)$ and $\left(F_{10}\right)-\left(F_{12}\right)$ are satisfied. Then (\mathcal{F}) possesses infinitely many nontrivial homoclinic orbits $\left(u_{k}\right)$ such that

$$
\Phi\left(u_{k}\right)=\frac{1}{2} \int_{\mathbb{R}}\left[u_{k}^{\prime \prime}(x)^{2}-\omega u_{k}^{\prime}(x)^{2}+a(x) u_{k}(x)^{2}\right] d x-\int_{\mathbb{R}} F\left(t, u_{k}(x)\right) d x \rightarrow 0
$$

as $k \rightarrow \infty$.
In the following, we give some examples which satisfy our assumptions.
Example 5.2 (The subquadratic case at infinity). Let

$$
F(x, u)=h(x)|u|^{\theta} \ln \left(1+|u|^{2}\right)
$$

where $\left.(x, u) \in \mathbb{R}^{2}, \theta \in\right] 1,2\left[\right.$ and $h \in C(\mathbb{R}, \mathbb{R})$ with $0<\inf _{x \in \mathbb{R}} h(x) \leq \sup _{x \in \mathbb{R}} h(x)$ $<\infty$. It is easy to see that $F(x, u)$ satisfies the conditions $\left(F_{10}\right)-\left(F_{12}\right)$ and the subquadratic condition at infinity, i.e.,

$$
\lim _{|u| \rightarrow \infty} \frac{F(x, u)}{|u|^{2}}=0
$$

Example 5.3 (The superquadratic case at infinity). Let

$$
F(x, u)=h(x)\left(|u|^{\nu}+|u|^{\theta} \ln \left(1+|u|^{2}\right)\right)
$$

where $(x, u) \in \mathbb{R} \times \mathbb{R}, \theta \in] 1,2[, \nu \in] 2, \infty\left[\right.$ and $h \in C(\mathbb{R}, \mathbb{R})$ with $0<\inf _{x \in \mathbb{R}} h(x)$ $\leq \sup _{x \in \mathbb{R}} h(x)<\infty$. It is easy to see that $F(x, u)$ satisfy the conditions $\left(F_{10}\right)$ $\left(F_{12}\right)$ and the superquadratic condition at infinity, i.e.,

$$
\lim _{|u| \rightarrow \infty} \frac{F(x, u)}{|u|^{2}}=+\infty
$$

Example 5.4 (The asymptotically quadratic case at infinity). Let

$$
F(x, u)=\frac{1}{2} S(x) u^{2}+|u|^{\theta} \ln \left(1+|u|^{2}\right)
$$

where $S: \mathbb{R} \rightarrow \mathbb{R}$ is a continuous bounded function and $\theta \in] 1,2[$. It is clear that $F(x, u)$ is asymptotically quadratic at infinity with respect to u and satisfies the conditions $\left(F_{10}\right)-\left(F_{12}\right)$.

Proof of Theorem 5.1

Consider the continuously differentiable functional $\Phi: E \rightarrow \mathbb{R}$ introduced in Section 3 whose critical points on E are the homoclinic solutions of the equation (\mathcal{F}).

We shall use the following Variant Symmetric Mountain Pass Lemma due to Kajikiya [5] to prove our result. We will first recall the notion of genus.

Let E be a Banach space and let A be a subset of $E . \quad A$ is said to be symmetric if $u \in A$ implies $-u \in A$. For a closed symmetric set A which does not contain the origin, we define the genus $\gamma(A)$ of A by the smallest integer k for which there exists an odd continuous mapping from A to $\mathbb{R}^{k} \backslash\{0\}$. If such a k does not exist, we define $\gamma(A)=+\infty$. Moreover, we set $\gamma(\phi)=0$. Let

$$
\Gamma_{k}=\{A \subset E: A \text { is a closed symmetric subset, } 0 \notin A, \gamma(A) \geq k\} .
$$

The properties of genus used in the proof of our main result are summarized as follows.

Lemma 5.5 ([5]). Let A and B be closed symmetric subsets of E that do not contain the origin. Then the following hold.
a) If $A \subset B$, then $\gamma(A) \leq \gamma(B)$.
b) The n-dimensional sphere S^{n} has a genus of $n+1$ by the Borsuk-Ulam theorem.

Lemma 5.6 ([5]). Let E be an infinite-dimensional Banach space and $\Phi \in$ $C^{1}(E, \mathbb{R})$ satisfies the following.
$\left(\Phi_{1}\right) \Phi(0)=0, \Phi$ is even and bounded from below and Φ satisfies the $(P S)-$ condition;
(Φ_{2}) For each $k \in \mathbb{N}$, there exists $A_{k} \subset \Gamma_{k}$ such that

$$
\sup _{u \in A_{k}} \Phi(u)<0 .
$$

Then Φ possesses a sequence of critical points $\left(u_{k}\right)$ such that

$$
\Phi\left(u_{k}\right) \leq 0, u_{k} \neq 0, \forall k \in \mathbb{N} \text { and } \lim _{k \rightarrow \infty} u_{k}=0 .
$$

Now, let $\theta \in C^{1}\left(\mathbb{R}^{+}, \mathbb{R}^{+}\right)$satisfying

$$
\left\{\begin{array}{l}
\theta(s)=1 \text { for } s \in\left[0, \frac{\rho}{2 \eta_{\infty}}\right], \theta(s)=0 \text { for } s \geq \frac{\rho}{\eta_{\infty}}, \tag{5.1}\\
\theta^{\prime}(s)<0 \text { for } \frac{\rho}{2 \eta_{\infty}}<s<\frac{\rho}{\eta_{\infty}},
\end{array}\right.
$$

where ρ is defined in $\left(F_{11}\right)$. Consider the new functional ψ defined on E by

$$
\psi(u)=\frac{1}{2}\|u\|^{2}-\theta(\|u\|)\left(\left\|u^{-}\right\|^{2}+\frac{1}{2}\left\|u^{0}\right\|^{2}+\int_{\mathbb{R}} F(x, u) d x\right) .
$$

Remark 5.7. It is clear that $\psi \in C^{1}(E, \mathbb{R}), \psi(u)=\Phi(u)$ for all $\|u\| \leq \frac{\rho}{2 \eta_{\infty}}$ and thus critical points of ψ satisfying $\|u\| \leq \frac{\rho}{2 \eta_{\infty}}$ are exactly critical points of Φ. Consequently, to prove our result, we will apply Lemma 5.6 to the functional ψ instead of Φ.

Lemma 5.8. Assume that $\left(\mathcal{A}_{\sigma}\right),\left(F_{10}\right)$ and $\left(F_{11}\right)$ are satisfied. Then ψ satisfies the $(P S)$-condition.

Proof. Let $\left(u_{n}\right)$ be a Palais-Smale sequence, that is $\left(\psi\left(u_{n}\right)\right)$ is bounded and $\psi^{\prime}\left(u_{n}\right) \rightarrow 0$ as $n \rightarrow \infty$. If $u \in E$ with $\|u\| \geq \frac{\rho}{\eta_{\infty}}$, then by the definition of θ and ψ, we have

$$
\psi(u)=\frac{1}{2}\|u\|^{2}
$$

which implies that

$$
\begin{equation*}
\psi(u) \rightarrow+\infty \text { as }\|u\| \rightarrow \infty \tag{5.2}
\end{equation*}
$$

Since $\left(\psi\left(u_{n}\right)\right)$ is bounded, then (5.2) implies that $\left(u_{n}\right)$ is bounded. Thus, passing to a subsequence if necessary, we can assume by Lemma 2.2 that $u_{n} \rightharpoonup$ $u=u^{-}+u^{0}+u^{+}, u_{n}^{+} \rightharpoonup u^{+}$and $u_{n}^{+} \rightarrow u^{+}$in $L^{1}(\mathbb{R})$. On the other hand, if $\left\|u_{n}\right\| \geq \frac{\rho}{\eta_{\infty}}$, we have $\psi^{\prime}\left(u_{n}\right) u_{n}=\left\|u_{n}\right\|^{2} \geq \frac{\rho^{2}}{\eta_{\infty}^{2}}$ contradicting the fact that $\psi^{\prime}\left(u_{n}\right) \rightarrow 0$ as $n \rightarrow \infty$. Hence, we can assume that $\left\|u_{n}\right\| \leq \frac{\rho}{\eta_{\infty}}$ for all $n \in \mathbb{N}$, which with (2.4) implies that

$$
\left|u_{n}(x)\right| \leq\left\|u_{n}\right\|_{L^{\infty}} \leq \eta_{\infty}\left\|u_{n}\right\| \leq \rho .
$$

This, jointly with (F_{10}) implies that

$$
\begin{align*}
\left|\int_{\mathbb{R}} f\left(x, u_{n}\right)\left(u_{n}^{+}-u^{+}\right) d x\right| & \leq \int_{\mathbb{R}}\left|f\left(x, u_{n}\right) \| u_{n}^{+}-u^{+}\right| d x \tag{5.3}\\
& \leq c \rho^{\nu} \int_{\mathbb{R}}\left|u_{n}^{+}-u^{+}\right| d x \rightarrow 0
\end{align*}
$$

as $n \rightarrow \infty$.
Now, we have

$$
\begin{aligned}
& \psi^{\prime}\left(u_{n}\right)\left(u_{n}^{+}-u^{+}\right) \\
= & \left\langle u_{n}, u_{n}^{+}-u^{+}\right\rangle-\theta^{\prime}\left(\left\|u_{n}\right\|\right)\left\langle\frac{u_{n}}{\left\|u_{n}\right\|}, u_{n}^{+}-u^{+}\right\rangle\left(\frac{1}{2}\left\|u_{n}^{0}\right\|^{2}+\left\|u_{n}^{-}\right\|^{2}+\int_{\mathbb{R}} W\left(t, u_{n}\right) d x\right) \\
& -\theta\left(\left\|u_{n}\right\|\right) \int_{\mathbb{R}} f\left(x, u_{n}\right)\left(u_{n}^{+}-u^{+}\right) d x,
\end{aligned}
$$

which with (5.3) and the fact that $\psi^{\prime}\left(u_{n}\right) \rightarrow 0$ implies

$$
\begin{equation*}
\left[1-\frac{\theta^{\prime}\left(\left\|u_{n}\right\|\right)}{\left\|u_{n}\right\|}\left(\frac{1}{2}\left\|u_{n}^{0}\right\|^{2}+\left\|u_{n}^{-}\right\|^{2}+\int_{\mathbb{R}} W\left(t, u_{n}\right) d x\right)\right]\left\langle u_{n}, u_{n}^{+}-u^{+}\right\rangle \rightarrow 0 \tag{5.4}
\end{equation*}
$$

as $n \rightarrow \infty$. Since $\left\|u_{n}\right\| \leq \frac{\rho}{\eta_{\infty}}$ then $\left|u_{n}(x)\right| \leq \rho$ and $F\left(x, u_{n}(x)\right) \geq 0$ for all $n \in \mathbb{N}$ and $x \in \mathbb{R}$ by $\left(F_{11}\right)$. Hence, the definition of θ implies

$$
1-\frac{\theta^{\prime}\left(\left\|u_{n}\right\|\right)}{\left\|u_{n}\right\|}\left(\frac{1}{2}\left\|u_{n}^{0}\right\|^{2}+\left\|u_{n}^{-}\right\|^{2}+\int_{\mathbb{R}} F\left(x, u_{n}\right) d x\right) \geq 1, \forall n \in \mathbb{N} .
$$

It follows from (5.4) that

$$
\left\langle u_{n}, u_{n}^{+}-u^{+}\right\rangle \rightarrow 0 \text { as } n \rightarrow \infty .
$$

By virtue of $u_{n}^{+} \rightharpoonup u^{+}$, we have $\left\|u_{n}^{+}\right\| \rightarrow\left\|u^{+}\right\|$and then $u_{n}^{+} \rightarrow u^{+}$.
Noting that E^{-}and E^{0} are finite dimensional subspaces, so we have $u_{n}^{-} \rightarrow$ u^{-}and $u_{n}^{0} \rightarrow u^{0}$. Therefore $u_{n} \rightarrow u$ in E and ψ satisfies the ($P S$)-condition. The proof of Lemma 5.8 is completed.

Now, the definitions of ψ and θ imply that $\psi(u)=\frac{1}{2}\|u\|^{2}=\psi(-u)$ for all $\|u\| \geq \frac{\rho}{\eta_{\infty}}$. If $\|u\| \leq \frac{\rho}{\eta_{\infty}}$, we have as above $|u(x)| \leq \rho$ for all $x \in \mathbb{R}$, which together with $\left(F_{11}\right)$ implies $F(x,-u(x))=F(x, u(x))$ for all $x \in \mathbb{R}$ and $\psi(-u)=\psi(u)$. Thus ψ is even in E.

We claim that ψ is bounded from below. If not, there exists a sequence $\left(u_{n}\right)$ such that

$$
\begin{equation*}
\psi\left(u_{n}\right) \rightarrow-\infty \text { as } n \rightarrow \infty \tag{5.5}
\end{equation*}
$$

By $\left(F_{10}\right),\left(F_{11}\right)$ and the definitions of ψ and θ, it is easy to verify that ψ maps bounded sets into bounded sets. It follows from (5.5) that $\left\|u_{n}\right\| \rightarrow \infty$ as $n \rightarrow \infty$. Thus (5.2) implies that $\psi\left(u_{n}\right) \rightarrow+\infty$ as $n \rightarrow \infty$, which contradicts (5.5). Hence the condition $\left(\Phi_{1}\right)$ of Lemma 5.6 is verified.

Finally, we show that ψ satisfies condition $\left(\Phi_{2}\right)$ of Lemma 5.6. For any positive integer k, let

$$
E_{k}=\oplus_{m=1}^{k} X_{m}, X_{m}=\mathbb{R} e_{m}
$$

where the sequence $\left(e_{m}\right)$ is defined in Section 2 . Since E_{k} is finite dimensional, there exists a positive constant β_{k} such that

$$
\begin{equation*}
\|u\| \leq \beta_{k}\|u\|_{L^{2}}, \forall u \in E_{k} . \tag{5.6}
\end{equation*}
$$

By $\left(F_{12}\right)$, there exists a constant $R>0$ such that

$$
\begin{equation*}
F(x, u) \geq \beta_{k}^{2}|u|^{2}, \forall x \in \mathbb{R},|u| \leq R . \tag{5.7}
\end{equation*}
$$

Let $u \in E$ such that $\|u\| \leq \frac{R}{\eta_{\infty}}$, we know that $|u(x)| \leq R$ for all $x \in \mathbb{R}$, thus by (5.7) we get

$$
\begin{equation*}
F(x, u(x)) \geq \beta_{k}^{2}|u(x)|^{2}, \forall x \in \mathbb{R} \tag{5.8}
\end{equation*}
$$

Therefore, by (5.6) and (5.8), for all $u \in E_{k}$ with $0<\|u\|=r_{k} \leq \min \left\{\frac{\rho}{2 \eta_{\infty}}, \frac{R}{\eta_{\infty}}\right\}$, we have

$$
\psi(u) \leq \frac{1}{2}\|u\|^{2}-\int_{\mathbb{R}} \beta_{k}^{2}|u(x)|^{2} d x-\frac{1}{2}\|u\|^{2}=-\frac{1}{2} r_{k}^{2},
$$

which implies

$$
\begin{equation*}
\left\{u \in E_{k} \backslash\{0\}:\|u\|=r_{k}\right\} \subset A_{k} \tag{5.9}
\end{equation*}
$$

where

$$
A_{k}=\left\{u \in E: \psi(u) \leq-\frac{1}{2} \eta_{k}^{2}\right\}
$$

Thus Lemma 5.5 and (5.9) imply

$$
\gamma\left(A_{k}\right) \geq \gamma\left(\left\{u \in E_{k} \backslash\{0\}:\|u\|=r_{k}\right\}\right) \geq k
$$

hence, by the definition of Γ_{k}, we have $A_{k} \subset \Gamma_{k}$. Moreover, the definition of A_{k} implies

$$
\sup _{u \in A_{k}} \psi(u) \leq-\frac{1}{2} \eta_{k}^{2}<0
$$

All the conditions of Lemma 5.6 hold and the proof of Theorem 5.1 is finished by this lemma.

References

[1] C. J. Amick and J. F. Toland, Homoclinic orbits in the dynamic phase-space analogy of an elastic strut, European J. Appl. Math. 3 (1992), no. 2, 97-114. https://doi.org/ 10.1017/S0956792500000735
[2] B. Buffoni, Periodic and homoclinic orbits for Lorentz-Lagrangian systems via variational methods, Nonlinear Anal. 26 (1996), no. 3, 443-462. https://doi.org/10.1016/ 0362-546X (94)00290-X
[3] P. Coullet, C. Elphick, and D. Repaux, Nature of spatial chaos, Phys. Rev. Lett. 58 (1987), no. 5, 431-434. https://doi.org/10.1103/PhysRevLett.58.431
[4] P. C. Hohenberg and J. B. Swift, Hydrodynamic fluctuations at the convective instability, Phys. Rev. A18 (1977), 319-328.
[5] R. Kajikiya, A critical point theorem related to the symmetric mountain pass lemma and its applications to elliptic equations, J. Funct. Anal. 225 (2005), no. 2, 352-370. https://doi.org/10.1016/j.jfa.2005.04.005
[6] J. Lega, J. V. Moloney, and A. C. Newell, Swift-Hohenberg equation for Lasers, Phy. Rev. Lett. 73 (1994), 2978-2981.
[7] C. Li, Homoclinic orbits of two classes of fourth order semilinear differential equations with periodic nonlinearity, J. Appl. Math. Comput. 27 (2008), no. 1-2, 107-116. https: //doi.org/10.1007/s12190-008-0045-4
[8] C. Li, Remarks on homoclinic solutions for semilinear fourth-order ordinary differential equations without periodicity, Appl. Math. J. Chinese Univ. Ser. B 24 (2009), no. 1, 4955. https://doi.org/10.1007/s11766-009-1948-z
[9] F. Li, J. Sun, G. Lu, and C. Lv, Infinitely many homoclinic solutions for a nonperiodic fourth-order differential equation without $(A R)$-condition, Appl. Math. Comput. 241 (2014), 36-41. https://doi.org/10.1016/j.amc.2014.04.067
[10] T. Li, J. Sun, and T. Wu, Existence of homoclinic solutions for a fourth order differential equation with a parameter, Appl. Math. Comput. 251 (2015), 499-506. https://doi. org/10.1016/j.amc.2014.11.056
[11] S. Lu and T. Zhong, Two homoclinic solutions for a nonperiodic fourth-order differential equation without coercive condition, Math. Methods Appl. Sci. 40 (2017), no. 8, 31633172. https://doi.org/10.1002/mma. 4230

12] T. F. Ma, Positive solutions for a beam equation on a nonlinear elastic foundation, Math. Comput. Modelling 39 (2004), no. 11-12, 1195-1201. https://doi.org/10.1016/ j.mcm.2004.06.001
[13] P. H. Rabinowitz, Minimax methods in critical point theory with applications to differential equations, CBMS Regional Conference Series in Mathematics, 65, Published for the Conference Board of the Mathematical Sciences, Washington, DC, 1986. https: //doi.org/10.1090/cbms/065
[14] Y. Ruan, Periodic and homoclinic solutions of a class of fourth order equations, Rocky Mountain J. Math. 41 (2011), no. 3, 885-907. https://doi.org/10.1216/RMJ-2011-41-3-885
[15] J. Sun and T. Wu, Two homoclinic solutions for a nonperiodic fourth order differential equation with a perturbation, J. Math. Anal. Appl. 413 (2014), no. 2, 622-632. https: //doi.org/10.1016/j.jmaa.2013.12.023
[16] J. Sun, T. Wu, and F. Li, Concentration of homoclinic solutions for some fourth-order equations with sublinear indefinite nonlinearities, Appl. Math. Lett. 38 (2014), 1-6. https://doi.org/10.1016/j.aml.2014.06.009
[17] S. Tersian and J. Chaparova, Periodic and homoclinic solutions of extended FisherKolmogorov equations, J. Math. Anal. Appl. 260 (2001), no. 2, 490-506. https://doi. org/10.1006/jmaa.2001.7470
[18] M. Timoumi, Multiple homoclinic solutions for a class of superquadratic fourth-order differential equations, General Letters in Mathematics Vol. 3 (2017), 154-163.
[19] L. Yang, Infinitely many homoclinic solutions for nonperiodic fourth order differential equations with general potentials, Abstr. Appl. Anal. 2014 (2014), Art. ID 435125, 7 pp. https://doi.org/10.1155/2014/435125
[20] L. Yang, Multiplicity of homoclinic solutions for a class of nonperiodic fourth-order differential equations with general perturbation, Abstr. Appl. Anal. 2014 (2014), Art. ID 126435, 5 pp. https://doi.org/10.1155/2014/126435
[21] Z. Zhang and R. Yuan, Homoclinic solutions for a nonperiodic fourth order differential equations without coercive conditions, Appl. Math. Comput. 250 (2015), 280-286. https://doi.org/10.1016/j.amc.2014.10.114
[22] W. Zou, Variant fountain theorems and their applications, Manuscripta Math. 104 (2001), no. 3, 343-358. https://doi.org/10.1007/s002290170032

Mohsen Timoumi
Department of Mathematics
Faculty of Sciences of Monastir
Monastir 5000, Tunisia
Email address: m_timoumi@yahoo.com

[^0]: Received December 21, 2020; Accepted November 4, 2021.
 2010 Mathematics Subject Classification. Primary 34C37, 58E05, 70H05.
 Key words and phrases. Fourth-order differential equations, homoclinic solutions, critical points, subquadratic growth, superquadratic growth, local conditions.

