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INFINITELY MANY HOMOCLINIC SOLUTIONS

FOR DIFFERENT CLASSES OF FOURTH-ORDER

DIFFERENTIAL EQUATIONS

Mohsen Timoumi

Abstract. In this article, we study the existence and multiplicity of
homoclinic solutions for the following fourth-order differential equation

(1) u(4)(x) + ωu′′(x) + a(x)u(x) = f(x, u(x)), ∀x ∈ R

where a(x) is not required to be either positive or coercive, and F (x, u) =∫ u
0 f(x, v)dv is of subquadratic or superquadratic growth as |u| → ∞, or

satisfies only local conditions near the origin (i.e., it can be subquadratic,

superquadratic or asymptotically quadratic as |u| → ∞). To the best
of our knowledge, there is no result published concerning the existence

and multiplicity of homoclinic solutions for (1) with our conditions. The

proof is based on variational methods and critical point theory.

1. Introduction

Consider the following fourth-order differential equation

(F) u(4)(x) + ωu′′(x) + a(x)u(x) = f(x, u(x)), ∀x ∈ R

where ω is a constant, a ∈ C(R,R) and f ∈ C(R2,R) are two given func-
tions. It is well-known that the mathematical modeling of important questions
in different fields of research, such as mechanical engineering, control systems,
economics and many others, leads naturally to the consideration of the nonlin-
ear differential equations. In particular, the fourth-order differential equations,
like (F) have been put forward as mathematical model for the study of pattern
formation in physics and mechanics. For example, the well-known extended
Fisher-Kolmogorov equation proposed by Coulet et al. in 1987 [3], in the study
of phase transitions, the fourth-order elastic beam equation in describing a large
class of elastic deflection [12], the Swift-Hohenberg equation which is a general
model for pattern-forming process derived in [4] to describe vandom thermal
fluctuations in the Boussinesque equation and the propagation of lazers [6].
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Here as usual, we say that a solution u of (F) is homoclinic (to 0) if u ∈
C4(R,R) and u(x) → 0 as |x| → ∞. In addition, if u 6= 0, then u is called a
nontrivial homoclinic solution. In the past years, based on variational methods
and critical point theory, many researchers are interested in the existence of
homoclinic solutions to equation (F). The main difficulty in handling system
(F) arises from the fact that H2(R) is not compactly embedded in Lp(R)
for p ∈ [2,∞]. To overcome this difficulty, many authors have considered
the case where a(x) and f(x, u) are independent of x or periodic in x, see
[1, 2, 7, 14, 17] and the references listed therein. In this case, the existence of
homoclinic solutions can be obtained by going to the limit of periodic solutions
of approximating problems. If a(x) and f(x, u) are neither autonomous in x
nor periodic in x, the existence of homoclinic solutions of (F) is quite different
from the ones just described because of the lack of compactness of the Sobolev
embedding. Notice that for the nonperiodic case, to obtain the existence of
homoclinic solutions, the following coercive condition on a is often needed:

There exists a constant a0 > 0 such that

(1.1) a0 ≤ a(x)→ +∞ as |x| → ∞

and

ω ≤ 2
√
a0,

which is used to establish the corresponding compact embedding lemmas on
suitable functional spaces, see [8–11, 15, 16, 19–22] and the references cited
therein. Recently, the author [18] strengthened condition (1.1) by (1.2):

There exists a constant σ < 0 such that

(1.2) |x|σ−1
a(x)→ +∞ as |x| → ∞;

Under condition (1.2) and some locally conditions near the origin on f(x, u),
the author [18] proved the existence of infinitely many homoclinic orbits for
equation (F). However, if the function a is not coercive, the conditions (1.1)
and (1.2) do not hold.

Inspired by the previous results, in the present paper, we are interested in
the existence of infinitely many solutions for (F) under some weaker conditions
than (1.1), (1.2) and we discuss three classes of potentials. The remainder of
this article consists of four sections. After presenting some preliminaries and
proving some compactness results which will aid in our analysis, we establish
in Sections 3 and 4 the existence of homoclinic orbits respectively for the sub-
quadratic and superquadratic cases. The last Section is devoted to the case
where the nonlinearity still only satisfies locally conditions near the origin (i.e.,
it can be subquadratic, superquadratic or asymptotically quadratic at infinity).
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2. Preliminaries

Let H2(R) be the Sobolev space with inner product and norm given respec-
tively by

〈u, v〉H2 =

∫
R

[u′′(x)v′′(x) + u′(x)v′(x) + u(x)v(x)]dx,

‖u‖H2 = 〈u, u〉
1
2

H2

for all u, v ∈ H2(R).
In the following, we shall use ‖·‖Ls to denote the norm of Ls(R) for any s ∈

[1,∞]. Let χ be the self-adjoint extension of the operator d4

dx4 +ω d2

dx2 +a(x) with

the domain D(χ) ⊂ L2(R). Let {E(λ) : −∞ < λ <∞} denotes the resolution
of χ, and U = I −E(0)−E(−0). It is well known that U commutes with χ, |χ|
and |χ|

1
2 , and χ = |χ|U is the polar decomposition of χ. Set E = D(|χ|

1
2 ) and

define on E the inner product

〈u, v〉0 = 〈|χ|
1
2 u, |χ|

1
2 v〉L2 + 〈u, v〉L2

and the corresponding norm

‖u‖0 = 〈u, u〉
1
2
0 .

Lemma 2.1 ([2, Lemma 8]). Assume that there exists a0 > 0 such that ω ≤
2
√
a0, a0 ≤ a(x), ∀x ∈ R. Then there exists a constant c0 > 0 such that∫

R
[u
′′
(x)2 − ωu

′
(x)2 + a(x)u(x)2]dx ≥ c0 ‖u‖2H2 , ∀u ∈ H2(R).

The main difficulty in dealing with the existence of solutions for (F) is the
lack of compactness of the Sobolev embedding. To overcome this difficulty
consider the following assumption:

(Aσ) a is bounded from below and there exists a constant σ > 1 such that

meas(
{
x ∈ R : |x|−σ a(x) < b

}
) < +∞, ∀b > 0

where meas denotes the Lebesgue’s measure on R.

Lemma 2.2. Assume that (Aσ) is satisfied. Then E is compactly embedded in
Ls(R) for all s ∈ [1,∞].

Proof. First, we will assume that the function a satisfies the following condition:
There exists a constant a0 > 0 such that

(2.1) ω ≤ 2
√
a0, a0 ≤ a(x), ∀x ∈ R.

For any ε > 0, by condition (Aσ) we can choose rε ≥ 1 such that meas(Bε) ≤ ε,
where

Bε =

{
x ∈ R \ [−rε, rε] : |x|−σ a(x) <

1

ε

}
.



140 M. TIMOUMI

Let

Dε = R \ (Bε∪]− rε, rε[)
and

lε = inf
x∈Dε

|x|−σ a(x).

Then 1
lε
≤ ε. Let (uk) be a sequence such that uk ⇀ u weakly in E. The

Banach-Steinhauss Theorem implies that

M = sup
k∈N
‖uk − u‖0 <∞.

Since E ⊂ H2(R) ⊂ Lp(R) for all p ∈ [2,∞] with continuous embedding, there
exists a constant M0 > 0 such that

‖uk − u‖L∞ ≤M0, ∀k ∈ N.

Since a(x) ≥ a0 in Iε =]− rε, rε[, the operator P : E → H2(Iε), u 7−→ u|Iε is a

continuous linear operator, where H2(Iε) denotes the weighted Sobolev space

H2(Iε) =

{
u : Iε → R :

∫
Iε

[u
′′
(x)2 − ωu

′
(x)2 + a(x)u(x)2]dx < +∞

}
.

Sobolev’s embedding Theorem implies that uk → u uniformly in Iε.
Step 1. We claim that E is compactly embedded in L∞(R). In fact, firstly,

let us remark that for any n ∈ N and x ∈ R, |x| ≥ rε, one has for v ∈ E

v(x) =

∫ x+1

x

[−v̇(s)(x+ 1− s)n+1 + v(s)(n+ 1)(x+ 1− s)n]ds.

So by Hölder’s inequality

|v(x)| ≤ 1√
2n+ 3

(

∫ x+1

x

|v̇(s)|2 ds) 1
2 +

n+ 1√
2n+ 1

(

∫ x+1

x

|v(s)|2 ds) 1
2

for any n ∈ N and x ∈ R. Then for any n, k ∈ N and |x| ≥ rε one has

|uk(x)− u(x)|

≤ 1√
2n+ 3

(∫
|s|≥rε

|u̇k(s)−u̇(s)|2 ds
) 1

2

+
n+ 1√
2n+ 1

(∫
|s|≥rε

|uk(s)−u(s)|2 ds
) 1

2

≤ M√
2n+ 3

√
ω

+
n+ 1√
2n+ 1

(meas(Bε))
1
2 ‖uk − u‖∞

+
n+ 1√
2n+ 1

( 1

lε

∫
Dε

|s|−σ a(s)
∣∣uk − u2

∣∣ ds) 1
2

≤ M√
2
√
n+ 1

√
ω

+
√

2(M0 +M)
√
nε

1
2 .

Choose n = [ε−
1
2 ] (the integer part of ε−

1
2 ), then n ≤ ε− 1

2 < n+ 1. Hence

(2.2) |uk(x)− u(x)| ≤ [
M√
2ω

+M0

√
2]ε

1
4 , ∀ |x| ≥ rε.
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On the other hand, since uk → u uniformly on Iε, there exists k0 ∈ N such that
for all k ≥ k0

(2.3) ‖uk − u‖L∞(Iε)
< ε.

Combining (2.2) and (2.3), we get uk → u in L∞(R).
Step 2: E is compactly embedded in L2(R). In fact, we have∫
|x|≥rε

|uk(x)− u(x)|2 dx =

∫
Bε

|uk(x)− u(x)|2 dx+

∫
Dε

|uk(x)− u(x)|2 dx

≤ meas(Bε)M2
0 +

1

lε

∫
Dε

a(x) |uk(x)− u(x)|2 dx

≤ (M2 +M2
0 )ε.

Since uk → u uniformly on Iε, we get ‖uk − u‖L2 → 0 as k →∞.
Step 3: p ∈]2,∞[. We claim that E is compactly embedded in Lp(R). In

fact, we have

‖uk − u‖pLp ≤ ‖uk − u‖
p−2
L∞ ‖uk − u‖

2
L2 .

By Steps 1 and 2, we deduce that uk → u in Lp(R).
Step 4: p ∈ [1, 2[. We claim that uk → u in Lp(R). Let s = σ

2−p . Then

p > 2
1+σ and sp > 1. For v ∈ Lp(R), we have∫
|x|≥rε

|v(x)|p dx

=

∫
Bε

|v(x)|p dx+

∫
{x∈Dε:|x|s|v(x)|≤1}

|v(x)|p dx+

∫
{x∈Dε:|x|s|v(x)|≥1}

|v(t)|p dx

≤ (meas(Bε))
1
2 ‖v‖pL2p +

∫
|x|≥rε

|x|−σ dx+

∫
Dε

(|x|s |v(x)|)2 |x|−sp dx

≤ ε
1
2 ‖v‖pL2p +

∫
|x|≥rε

|x|−σ dx+

∫
|x|≥rε

|x|σ |v(x)|2 dx

≤ ε
1
2 ‖v‖pL2p +

∫
|x|≥rε

|x|−σ dx+
1

lε
‖v‖20 .

Choose rε such that
∫
|x|≥rε |x|

−σ
dx ≤ ε 1

2 , we obtain∫
|x|≥rε

|v(x)|p dx ≤ ε 1
2 ‖v‖pL2p + ε

1
2 + ε

1
2 ‖v‖20 .

Hence, we have∫
|x|≥rε

|uk(x)− u(x)|p dx ≤ ε 1
2 ‖uk − u‖pL2p + ε

1
2 + ε

1
2 ‖uk − u‖20 .

Since 2p ≥ 2, we deduce from Steps 2, 3, the existence of a constant M1 > 0
such that ∫

|x|≥rε
|uk(x)− u(x)|p dx ≤ ε 1

2 (Mp
1 + 1 +M2).
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As above
∫
Iε
|uk(x)− u(x)|p dx→ 0 as k →∞. Hence uk → u in Lp(R).

Now, by a standard argument, we prove the general case which does not need
the condition (2.1) for all t ∈ R. The proof of Lemma 2.2 is completed. �

By Lemma 2.2, we see, since the selfadjoint operator χ in L2(R) is bounded
from below, it possesses a compact resolvent. Therefore, the spectrum σ(χ)
consists of eigenvalues numbered in λ1 ≤ λ2 ≤ · · · → +∞ (counted in their
multiplicities), and a corresponding system of eigenfunctions (ej)j∈N, (χej =
λjej), forms an orthonormal basis in L2(R). Let k− (resp. k0) be the number
of λj < 0 (resp. λj = 0), k̄ = k− + k0 and let E− = span {e1, . . . , ek−}, E0 =

span {ek−+1, . . . , ek̄} and E+ = span
{
ek̄+1, . . .

}
. Then E = E− ⊕ E0 ⊕ E+.

We introduce on E the following inner product

〈u, v〉 = 〈|χ|
1
2 u, |χ|

1
2 v〉L2 + 〈u0, v0〉L2

and the corresponding norm

‖u‖2 =
∥∥∥|χ| 12 u∥∥∥2

L2
+
∥∥u0
∥∥2

L2 ,

where u = u− + u0 + u+, v = v− + v0 + v+ ∈ E− ⊕ E0 ⊕ E+. Clearly,

‖u‖2L2 ≤ λ ‖u‖2 for all u ∈ E, where λ = max
{

1, λ−1
k̄+1

, |λk− |
−1
}

. Since ‖u‖20 =∥∥u− + u0
∥∥2

L2 + ‖u‖2 for all u ∈ E, one has ‖u‖2 ≤ ‖u‖20 ≤ (1 + λ) ‖u‖2, i.e.,

the norms ‖.‖0 and ‖.‖ are equivalent. From now on the norm ‖.‖ on E will
be used. By Lemma 2.2, for all p ∈ [1,∞], there exists a constant ηp > 0 such
that

(2.4) ‖u‖Lp ≤ ηp ‖u‖ , ∀u ∈ E.

For later use, let

a(u, v) = 〈|χ|
1
2 Uu, |χ|

1
2 v〉L2 , ∀u, v ∈ E

be the quadratic form associated with χ. For any u ∈ D(χ) and v ∈ E, we
have

(2.5) a(u, v) =

∫
R
[u
′′
(x)v

′′
(x)− ωu

′
(x)v

′
(x) + a(x)u(x)v(x)]dx

and so, since D(χ) is dense in E, (2.5) holds for all u ∈ E. Moreover, by
definition

(2.6) a(u, u) =
∥∥u+

∥∥2 −
∥∥u−∥∥2

for all u = u− + u0 + u+ ∈ E = E− ⊕ E0 ⊕ E+.
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3. Subquadratic case

In this section, we are interested in the existence of infinitely many homo-
clinic solutions for equation (F) when the potential F (x, u) =

∫ u
0
f(x, u)dx

is subquadratic at infinity with respect to u. More precisely, we make the
following assumptions.

(F1) F (x, u) ≥ 0 for all (x, u) ∈ R2 and there exist constants 0 < µ < 2 and
R > 0 such that

f(x, u)u ≤ µF (x, u), ∀x ∈ R, |u| ≥ R,

and

f(x, u)u ≤ 2F (x, u), ∀x ∈ R, |u| ≤ R;

(F2) lim|u|→0
F (x,u)

|u|2 = +∞ uniformly for x ∈ R;

(F3) There exists a constant c > 0 such that

|f(x, u)| ≤ c |u| , ∀x ∈ R, |u| ≤ R,

where R is the constant in (F1);

(F4) lim inf |u|→∞
F (x,u)
|u| ≥ a, where a is a positive constant.

Our main result in this section reads as follows.

Theorem 3.1. Suppose that (Aσ), (F1)-(F4) hold and F (x, u) is even in u for
all x ∈ R. Then (F) possesses infinitely many nontrivial homoclinic solutions.

Example 3.2. Let

F (x, u) = h(x) |u|µ

where 0 < infx∈R h(x) ≤ supx∈R h(x) < ∞ for all x ∈ R and µ ∈ [1, 2[. It is
easy to check that F satisfies conditions (F1)-(F4).

Proof of Theorem 3.1

In the following, cn, n ∈ N denotes some various positive constants. For
equation (F), we associate the following functional defined on the space E
introduced in Section 2 by

Φ(u) =
1

2

∫
R

[u
′′
(x)2 − ωu

′
(x)2 + a(x)u(x)2]dx−

∫
R
F (x, u(x))dx.

Then by (2.6), Φ can be rewritten as

Φ(u) =
1

2
(
∥∥u+

∥∥2 −
∥∥u−∥∥2

)− ϕ(u), u = u− + u0 + u+ ∈ E,

where

ϕ(u) =

∫
R
F (x, u(x))dx, u ∈ E.

It is well known that under assumptions of Theorem 3.1 the functional Φ is
continuously differentiable on E and its critical points on E are exactly the
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homoclinic solutions of the equation (F). Moreover ϕ′ is compact and for all
u, v ∈ E

Φ′(u)v =

∫
R

[
u′′(x)v′′(x)−ωu′(x)v′(x)+a(x)u(x)v(x)

]
dx−

∫
R
f(x, u(x))v(x)dx.

To prove Theorem 3.1, the following Variant Fountain Theorem developed by
Zou [22] will be needed. Let E be a Banach space with the norm ‖·‖ and
E = ⊕m∈NXm with dimXm <∞ for any m ∈ N. Set

Yk = ⊕km=1Xm, Zk = ⊕∞m=kXm.

Consider a family of functionals fλ ∈ C1(E,R) defined by

Φλ(u) = A(u)− λB(u), u ∈ E, λ ∈ [1, 2].

Lemma 3.3 ([22]). Assume that the functionals fλ defined previously, satisfy
(T1) Φλ maps bounded sets into bounded sets uniformly for all λ ∈ [1, 2] and

Φλ(−u) = Φλ(u), ∀(λ, u) ∈ [1, 2]× E;

(T2) B(u) ≥ 0 for all u ∈ E and B(u) → +∞ as ‖u‖ → ∞ on any finite
dimensional subspace of E;

(T3) There exist ρk > rk > 0 such that

ak(λ) = inf
u∈Zk,‖u‖=ρk

Φλ(u) ≥ 0 > bk(λ) = max
u∈Yk,‖u‖=rk

Φλ(u)

for all λ ∈ [1, 2] and

dk(λ) = inf
u∈Zk,‖u‖≤ρk

Φλ(u)→ 0 as k →∞ uniformly for λ ∈ [1, 2].

Then there exist λn → 1, uλn ∈ Yn such that

(Φλn|Yn)′(uλn) = 0, Φλn(uλn)→ ck ∈ [dk(2), bk(1)].

Particularly, if (uλn) has a convergent subsequence for every k, then Φ1 has
infinitely many nontrivial critical points uk ∈ E \ {0} satisfying Φ1(uk) → 0−

as k →∞.

For m ∈ N, let Xm = Rem, where (em) is the sequence defined in Section
2, then Yk and Zk are defined as above. In order to apply the above Variant
Fountain Theorem for proving our result, we introduce the family of functionals

Φλ(u) = A(u)− λB(u), (λ, u) ∈ [1, 2]× E,

where

A(u) =
1

2

∥∥u+
∥∥2
, B(u) =

1

2

∥∥u−∥∥2
+

∫
R
F (x, u(x))dx,

for u = u− + u0 + u+ ∈ E = E− ⊕ E0 ⊕ E+.
Now, for |u| ≤ R, we have by (F3) and the Mean Value Theorem

(3.1) F (x, u) =

∫ 1

0

f(x, su)xds ≤ c

2
|u|2 ≤ cR

2
|u| .
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For |u| ≥ R, set

ψ(ξ) = F (x,
Rx

ξ |u|
)ξµ, ξ ∈]0, 1].

By (F1), it holds

ψ′(ξ) = −f(x,
Ru

ξ |u|
)
Ru

ξ2 |u|
ξµ + µF (x,

Ru

ξ |u|
)ξµ−1

= ξµ−1[−f(x,
Ru

ξ |u|
)
Ru

ξ |u|
+ µF (x,

Ru

ξ |u|
)] ≥ 0.

So ψ is nondecreasing in ]0, 1], and since ξ = R
|u| ≤ 1, then

(3.2) F (x, u)(
R

|u|
)µ ≤ F (x,

Ru

|u|
).

Combining (3.1) and (3.2) yields

F (x, u)(
R

|u|
)µ ≤ c

2
R2

and then
F (x, u) ≤ c

2
R2−µ |u|µ

which with (3.1) gives

(3.3) F (x, u) ≤ c1(|u|+ |u|µ), ∀(x, u) ∈ R2.

It follows from (2.4) and (3.3) that for any λ ∈ [1, 2] and u ∈ E

|Φλ(u)| ≤ 1

2
‖u‖2 + 2c1(η1 ‖u‖+ ηµ ‖u‖µ)

which implies that Φλ maps bounded sets into bounded sets uniformly for
λ ∈ [1, 2]. Note that F (x,−u) = F (x, u), so we have Φλ(−u) = Φλ(u) for all
(λ, u) ∈ [1, 2]× E. Thus the condition (T1) of Lemma 3.3 holds.

Lemma 3.4. Assume that (Aσ), (F1) and (F4) hold. Then B(u) ≥ 0 for all
u ∈ E and B(u)→ +∞ as ‖u‖ → ∞ on any finite-dimensional subspace of E.

Proof. By assumption (F1), it is clear that B(u) ≥ 0 for all u ∈ E. We claim
that for any finite-dimensional subspace F of E, there exists a constant ε0 > 0
such that

(3.4) meas({x ∈ R : |u(x)| ≥ ε0 ‖u‖}) ≥ ε0, ∀u ∈ F \ {0} ,
where meas denotes the Lebesgue’s measure in R. If not, for any k ∈ N, there
exists uk ∈ F \ {0} such that

meas(

{
x ∈ R : |uk(x)| ≥ 1

k
‖uk‖

}
) <

1

k
.

Let vk = uk
‖uk‖ ∈ F , then ‖vk‖ = 1 and

(3.5) meas(

{
x ∈ R : |vk(x)| ≥ 1

k

}
) <

1

k
, ∀k ∈ N.
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Since F is finite dimensional, then by taking a subsequence if necessary, we can
assume that vk → v0 in F for some v0 ∈ F , ‖v0‖ = 1. Recall that any two
norms on F are equivalent, so one has

(3.6)

∫
R
|vk(x)− v0(x)| dx→ 0 as k →∞.

Since ‖v0‖ = 1, then ‖v0‖L∞ = supt∈R |v0(x)| > 0. Hence there exists a
constant σ0 > 0 such that

(3.7) meas({x ∈ R : |v0(x)| ≥ σ0}) ≥ σ0.

For any k ∈ N, let

Ωk =

{
x ∈ R : |vk(x)| < 1

k

}
, Ω0 = {x ∈ R : |v0(x)| ≥ σ0} .

By (3.5) and (3.7), for any k ∈ N large enough, it holds

meas(Ω0 ∩ Ωk) = meas(Ω0 \ Ωck) ≥ meas(Ω0)−meas(Ωck) ≥ σ0 −
1

k
≥ σ0

2
.

Then for k large enough∫
R
|vk(x)− v0(x)| dx ≥

∫
Ω0∩Ωk

|vk(x)− v0(x)| dx

≥ (σ0 −
1

k
)meas(Ω0 ∩ Ωk) ≥ σ2

0

4
> 0

which contradicts (3.6). Therefore (3.4) holds.
For the ε0 given in (3.4), denote

Ωu = {x ∈ R : |u(x)| ≥ ε0 ‖u‖} , ∀u ∈ F \ {0} .

Then by (3.4), we obtain

(3.8) meas(Ωu) ≥ ε0, ∀u ∈ F \ {0} .

By (F4), there exists a constant R1 > R such that

(3.9) F (x, u) ≥ a |u|
2
, ∀x ∈ R, |u| ≥ R1.

Let u ∈ F such that ‖u‖ ≥ R1

ε0
, we have

(3.10) |u(x)| ≥ ε0 ‖u‖ ≥ R1, ∀x ∈ Ωu.

Combining (3.9) and (3.10) yields for all u ∈ F , ‖u‖ ≥ R1

ε0

B(u) ≥
∫

Ωu

F (x, u)dx ≥ aε0
2
‖u‖meas(Ωu) ≥ aε20

2
‖u‖ .

This implies that B(u)→ +∞ as ‖u‖ → ∞ on any finite-dimensional subspace
F of E. The proof of Lemma 3.4 is completed. �
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Lemma 3.5. Suppose that (Aσ) holds. Then for any p ∈ [2,∞]

lp(k) = sup
u∈Zk,‖u‖=1

‖u‖Lp → 0 as k →∞.

Proof. It is clear that 0 < lp(k + 1) ≤ lp(k), so that lp(k)→ lp as k →∞. For
every k ≥ 1, there exists uk ∈ Zk such that ‖uk‖ = 1 and ‖uk‖Lp >

1
2 lp(k).

For any v ∈ E, let v =
∑∞
i=1 viei. By the Cauchy-Schwartz inequality, one has

|〈uk, v〉| =

∣∣∣∣∣〈uk,
∞∑

i=k+1

viei〉

∣∣∣∣∣ ≤
∞∑

i=k+1

|vi| ‖ei‖ → 0 as k →∞

which implies that uk ⇀ 0. Without loss of generality, Lemma 2.2 implies that
uk → 0 in Lp(R). Thus we have proved that lp = 0. The proof of Lemma 3.5
is completed. �

Lemma 3.6. Assume that (Aσ), (F2) and (F3) are satisfied. Then there exist
a constant k0 ∈ N and two sequences 0 < rk < ρk → 0 as k →∞ such that

(3.11) ak(λ) = inf
u∈Zk,‖u‖=ρk

Φλ(u) > 0, ∀k ≥ k0, ∀λ ∈ [1, 2],

(3.12) bk(λ) = max
u∈Yk,‖u‖=rk

Φλ(u) < 0, ∀k ≥ k0, ∀λ ∈ [1, 2],

(3.13) ck(λ) = inf
u∈Zk,‖u‖≤ρk

Φλ(u)→ 0 as k →∞ uniformly for λ ∈ [1, 2].

Proof. For any u ∈ E with ‖u‖ ≤ R
η∞

, (2.4) implies

(3.14) ‖u‖L∞ ≤ R.

Note that Zk ⊂ E+ for any k ≥ k+ + 1 with k+ is defined in Section 2. It
follows from (3.1) and (3.14) that for k ≥ k+ + 1 and ‖u‖ ≤ R

η∞
, one has

(3.15)
Φλ(u) ≥ 1

2
‖u‖2 − 2

∫
R

cR

2
|u| dx

≥ 1

2
‖u‖2 − cR ‖u‖L1 , ∀λ ∈ [1, 2], ∀u ∈ Zk.

Let

(3.16) Mk = l1(k) = sup
u∈Zk\{0}

‖u‖L1

‖u‖
, ∀k ∈ N.

Then by Lemma 3.5, we have

(3.17) Mk → 0 as k →∞.

Combining (3.15), (3.16) yields

(3.18) Φλ(u) ≥ 1

2
‖u‖2 − cRMk ‖u‖
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for all k ≥ k+ + 1 and u ∈ Zk with ‖u‖ ≤ R
η∞

. For any k ≥ k+ + 1, let

ρk = 4cRMk. Then by (3.17), there exists an integer k0 ≥ k+ + 1 such that

(3.19) ρk ≤
R

η∞
, ∀k ≥ k0.

It follows from (3.18) and (3.19) that for all k ≥ k0

ak(λ) = inf
u∈Zk,‖u‖=ρk

Φλ(u) ≥ 1

2
ρ2
k − cRMkρk =

1

4
ρ2
k > 0.

Hence (3.11) is satisfied.
Now, for any k ≥ k0, (3.18) implies that for any u ∈ Zk with ‖u‖ ≤ ρk

Φλ(u) ≥ −cRMkρk.

Since Φλ(0) = 0, we deduce that

0 ≥ inf
u∈Zk,‖u‖≤ρk

Φλ(u) ≥ −cRMkρk, ∀k ≥ k0,

which implies that (3.13) is satisfied.
It remains to prove (3.12). Since the two norms ‖·‖L2 and ‖·‖ are equivalent

in finite-dimensional space Yk, then for any k ∈ N, there exists a constant
dk > 0 such that

(3.20) ‖u‖L2 ≥ dk ‖u‖ , ∀u ∈ Yk.
By (F2), for any k ∈ N, there exists a constant εk > 0 such that

(3.21) F (x, u) ≥ |u|
2

d2
k

, ∀ |u| ≤ εk.

For any k ∈ N and u ∈ E with ‖u‖ ≤ εk
η∞

, one has by (2.4), ‖u‖L∞ ≤ εk.

Consequently, for all k ∈ N and u ∈ Yk with ‖u‖ ≤ εk
η∞

, it follows from (3.20)

and (3.21)

(3.22) Φλ(u) ≤ 1

2

∥∥u+
∥∥2 −

∫
R

|u|2

d2
k

dx ≤ −1

2
‖u‖2 ,∀λ ∈ [1, 2].

For any k ∈ N, choose 0 < rk < min
{
ρk,

εk
η∞

}
, then (3.22) implies

bk(λ) = max
u∈Yk,‖u‖=rk

Φλ(u) ≤ −r
2
k

2
< 0, ∀k ∈ N.

The proof of Lemma 3.6 is completed. �

It follows from above that there exists a positive integer k0 such that for all
k ≥ k0, all the conditions of Lemma 3.3 are satisfied, therefore for all k ≥ k0,
there exist sequences 0 < λj → 1, uj ∈ Yj such that

(3.23) (fλj |Yj )
′(uλj ) = 0, fλj (uλj )→ θk ∈ [dk(2), bk(1)].

Lemma 3.7. Under the assumptions of Theorem 3.1, the sequence (uλj ) is
bounded in E.
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Proof. Set for j ∈ N
Λj =

{
x ∈ R :

∣∣uλj (x)
∣∣ ≥ R1

}
,

where R1 is defined in (3.9) and note that by (F1), f(x, u)u ≤ 2F (x, u),
∀(x, u) ∈ R2. Hence it holds from (F1), (3.9) and (3.23) that

−Φλj (uλj ) =
1

2
(Φλj |Yj )

′(uλj )uλj − Φλj (uλj )

= λj

∫
R
[F (x, uλj )−

1

2
f(x, uλj )uλj ]dx

≥ λj
∫

Λj

[F (x, uλj )−
1

2
f(x, uλj )uλj ]dx

≥ λj
2− µ

2

∫
Λj

F (x, uλj )dx

≥ λj
aλj(2− µ)

4

∫
Λj

∣∣uλj ∣∣ dx, ∀j ∈ N.

It follows from (3.23) that

(3.24)

∫
Λj

∣∣uλj ∣∣ dx ≤ c2, ∀j ∈ N.

For any j ∈ N, let χj : R→ R be the indicator of Λj , that is

χj(x) =

{
1 if t ∈ Λj ,
0 if t ∈ Λcj .

Hence by the definition of Λj and (3.24), we have∥∥(1− χj)uλj
∥∥
L∞
≤ R1 and

∥∥χjuλj∥∥L1 ≤ c2, ∀j ∈ N.
Therefore from the equivalence of any two norms on finite-dimensional space
E− ⊕ E0, it holds that∥∥∥u−λj + u0

λj

∥∥∥2

L2
= 〈u−j + u0

j , uj〉L2

= 〈u−λj + u0
λj , (1− χj)uλj 〉L2 + 〈u−λj + u0

λj , χjuλj 〉L2

≤
∥∥∥u−λj + u0

λj

∥∥∥
L1

∥∥(1− χj)uλj
∥∥
L∞

+
∥∥∥u−λj + u0

λj

∥∥∥
L∞

∥∥χjuλj∥∥L1

≤
(
c3
∥∥(1− χj)uλj

∥∥
L∞

+ c4
∥∥χjuλj∥∥L1

)∥∥∥u−λj + u0
λj

∥∥∥
L2

≤ (c3R1 + c4c2)
∥∥∥u−λj + u0

λj

∥∥∥
L2
, ∀j ∈ N.

Consequently ∥∥∥u−λj + u0
λj

∥∥∥
L2
≤ c3R1 + c4c2, ∀j ∈ N

which together with the fact that E−⊕E0 is of finite-dimensional, implies that

(3.25)
∥∥∥u−λj + u0

λj

∥∥∥ ≤ c5, ∀j ∈ N.
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By noting that∥∥∥u+
λj

∥∥∥2

= 2Φλj (uλj ) + λj

∥∥∥u−λj∥∥∥2

+ 2λj

∫
R
F (x, uλj )dx, ∀j ∈ N,

we deduce from (2.4), (3.3), (3.23) and (3.25) that∥∥uλj∥∥2
=
∥∥∥u−λj + u0

λj

∥∥∥2

+
∥∥∥u+

λj

∥∥∥2

=
∥∥∥u−λj + u0

λj

∥∥∥2

+ 2fλj (uλj ) + λj

∥∥∥u−λj∥∥∥2

+ 2λj

∫
R
F (x, uλj )dx

≤ c6 + c8(
∥∥uλj∥∥+

∥∥uλj∥∥µ), ∀j ∈ N,

and since µ < 2 this implies that (uλj ) is bounded in E. The proof of Lemma
3.7 is completed. �

It remains to prove that (uλj ) has a strongly convergent subsequence in E.

Since E− ⊕E0 is finite-dimensional, then by Lemmas 2.2, 3.5, we can assume,
without loss of generality, that

(3.26) u−λj → u−, u0
λj → u0, u+

λj
⇀ u+ and uλj ⇀ u as j →∞

for some u = u−+u0+u+ ∈ E−⊕E0⊕E+. In virtue of the Riez Representation
Theorem, (Φλj |Yj )

′ : Yj → Y ∗j and ϕ′ : E → E∗ can be viewed as (Φλj |Yj )
′ :

Yj → Yj and ϕ′ : E → E, where Y ∗j and E∗ are the dual spaces of Yj and E
respectively. Set Pj : E → Yj be the orthogonal projection for all j ∈ N, we
have

0 = (Φλj |Yj )
′(uλj ) = u+

λj
− λju−λj − λjPjϕ

′(uλj ), ∀j ∈ N
that is

(3.27) u+
λj

= λj [u
−
λj

+ Pjϕ
′(uλj )], ∀j ∈ N.

Since ϕ′ : E → E is compact, then without loss of generality, (3.26) implies
that the right-hand side of (3.27) converges strongly in E and then u+

λj
→ u+

in E. This with (3.26) implies uλj → u in E.
Consequently, by Lemma 3.3, the functional Φ1 = Φ possesses infinitely

many nontrivial critical points, which implies that (F) has infinitely many
nontrivial homoclinic orbits. The proof of Theorem 3.1 is completed.

4. Superquadratic case

In this Section, we are interested in the existence of infinitely many homo-
clinic orbits of (F) when the potential F (x, u) is superquadratic at infinity with
respect to u. More precisely, we make the following assumptions:

(F5)
F (x, u)

|u|2
→ +∞ as |u| → ∞, uniformly in x ∈ R;

(F6) f(x, u)u ≥ 2F (x, u) ≥ 0, ∀(x, u) ∈ R2;
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(F7)
|f(x, u)|
|u|

→ 0 as |u| → 0, uniformly in x ∈ R;

(F8) there exist constants α > 0 and a > 0 such that

|f(x, u)| ≤ a(|u|α + 1), ∀(x, u) ∈ R2;

(F9) there exist constants β ≥ α, β > 1, b > 0 and r > 0 such that

f(x, u)u− 2F (x, u) ≥ b |u|β , ∀x ∈ R, ∀ |u| ≥ r.

Our main results in this Section read as follows:

Theorem 4.1. Assume that (Aσ) and (F5)-(F9) hold. Then the fourth-order
differential equation (F) possesses at least one nontrivial homoclinic solution.

Theorem 4.2. Assume that (Aσ) and (F5)-(F9) hold and F (x, u) is even in
u ∈ R. Then (F) has infinitely many distinct homoclinic solutions.

Example 4.3. Let

F (x, u) = |u|2 ln(1 + |u|2).

A straightforward computation shows that F satisfies Theorems 4.1 and 4.2.

Now we are going to establish the corresponding variational framework to
obtain homoclinic solutions for (F). To this end, define the functional Φ : E →
R as in Section 3. It is well known that under the assumptions of Theorem 4.1,
the functional Φ is continuously differentiable on E and its critical points on
E are exactly the homoclinic solutions of the equation (F). For the existence
and multiplicity of homoclinic solutions of (F), we will appeal to the following
abstract critical lemmas. Let E be a Banach space and Φ ∈ C1(E,R). As usual
we say Φ satisfies the Palais-Smale condition ((PS) for short) if any sequence
(uk) ⊂ E for which (Φ(uk)) is bounded and Φ′(uk)→ 0 as k →∞ possesses a
convergent subsequence.

Lemma 4.4 (Generalized Mountain Pass Theorem [13]). Let E an infinite
dimensional Banach space such that E = V ⊕X, where V is finite dimensional.
If Φ ∈ C1(E,R) and the following conditions hold:

(Φ1) Φ satisfies the (PS) condition;
(Φ2) there are constants ρ, δ > 0 such that

Φ|∂Bρ∩X ≥ δ;

where ∂Bρ = {u ∈ E : ‖u‖ = ρ} ;
(Φ3) there are constants r > ρ, M > 0 and e ∈ X with ‖e‖ = 1 such that

Φ|∂Λ ≤ 0 and Φ|Λ ≤M,

where

Λ = (Br ∩ V )⊕ {se : 0 ≤ s ≤ r} .
Then Φ has a critical point u with Φ(u) ≥ δ.
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Lemma 4.5 (Symmetric Mountain Pass Theorem [13]). Let E be an infinite
dimensional Banach space such that E = V ⊕X, where V is finite dimensional.
If Φ ∈ C1(E,R) is even and satisfies Φ(0) = 0, (Φ1), (Φ2) and

(Φ
′

3) for each finite dimensional subspace Ẽ ⊂ E, there is an R = R(Ẽ) > 0

such that Φ ≤ 0 on Ẽ \BR.
Then Φ possesses an unbounded sequence of critical values.

In the following, cn, n ∈ N denote some various constants.

Lemma 4.6. If (Aσ), (F6), (F8) and (F9) hold, then Φ satisfies the (PS)
condition.

Proof. Let (uk) ⊂ E be a (PS) sequence, i.e., there exists a constant M > 0
such that

(4.1) |Φ(uk)| ≤M, ∀k ∈ N and Φ′(uk)→ 0 as k →∞.

We claim that (uk) is bounded. If not, passing to a subsequence if necessary,
we may assume that ‖uk‖ → ∞ as k →∞. By (F6) and (F9), we have

2Φ(uk)− Φ′(uk)uk =

∫
R
[f(x, uk)uk − 2F (x, uk)]dx(4.2)

≥ b
∫
{t∈R:|uk(x)|≥r}

|uk(x)|β dx

for all positive integer k, which implies that

(4.3)
1

‖uk‖

∫
{t∈R:|uk(x)|≥r}

|uk(x)|β dx→ 0

as k →∞. Let

(4.4) vk(x) =

{
uk(x) if |uk(x)| ≤ r,

0 if |uk(x)| > r,

and

(4.5) wk(x) = uk(x)− vk(x)

for all positive integer k and all x ∈ R. By (4.2) and (4.5), we get

(4.6) c1(1 + ‖uk‖) ≥ b ‖wk‖βLβ
for all positive integer k. It follows from Hölder’s inequality, (4.4), (4.5) and
the equivalence of the norms on the finite dimensional subspace E− ⊕E0 that

(4.7)

∥∥u−k + u0
k

∥∥2

L2 = 〈u−k + u0
k, vk〉L2 + 〈u−k + u0

k, wk〉L2

≤
∥∥u−k + u0

k

∥∥
L1 ‖vk‖L∞ +

∥∥u−k + u0
k

∥∥
Lβ′
‖wk‖Lβ

≤ c2
∥∥u−k + u0

k

∥∥
L2 (1 + ‖wk‖Lβ )

for all positive integer k, where β′ = β
β−1 (β > 1) is the Hölder’s conjugate of

β.



HOMOCLINIC SOLUTIONS FOR FOURTH-ORDER DIFFERENTIAL EQUATIONS 153

From the equivalence of the norms on the finite dimensional subspace E−⊕
E0, (4.6) and (4.7) we obtain∥∥u−k + u0

k

∥∥ ≤ c3 ∥∥u−k + u0
k

∥∥
L2 ≤ c4(1 + ‖wk‖Lβ ) ≤ c5(1 + ‖uk‖

1
β )

for all positive integer k, which implies that

(4.8)

∥∥u−k + u0
k

∥∥
‖uk‖

→ 0

as k →∞. By (F8) and (2.4), one sees that

Φ′(uk)u+
k ≥

∥∥u+
k

∥∥2 −
∫
R
|f(x, uk)|

∣∣u+
k

∣∣ dx
≥
∥∥u+

k

∥∥2 − aη∞
∥∥u+

k

∥∥ rα−β ∫
{t∈R:|uk(x)|≥r}

|uk|β dx

− arαη1

∥∥u+
k

∥∥− aη1

∥∥u+
k

∥∥
which, by (4.3), implies

(4.9)

∥∥u+
k

∥∥
‖uk‖

→ 0

as k →∞. Hence by (4.8) and (4.9), we obtain

1 =
‖uk‖
‖uk‖

≤
∥∥u−k + u0

k

∥∥+
∥∥u+

k

∥∥
‖uk‖

→ 0

as k → ∞, which is a contradiction. Hence (uk) must be bounded. Moreover
we have∥∥u+

k − u
+
∥∥2

= (Φ′(uk)− Φ′(u))(u+
k − u

+) + (ϕ′(uk)− ϕ′(u))(u+
k − u

+).

Going to a subsequence if necessary, we may assume, by using Lemma 2.2, that
uk ⇀ u weakly in E and

(4.10) uk → u in both L2(R) and L∞(R) as k →∞.

Since ϕ′ is continuous, we deduce that ϕ′(uk)→ ϕ′(u) and therefore u+
k → u+

in E. From (4.10) and the equivalence of the norms on the finite dimensional
subspace E− ⊕ E0 we obtain that u0

k → u0 and u−k → u− in E as k → ∞.
Hence (uk) has a convergent subsequence, which shows that the (PS) condition
holds. The proof of Lemma 4.6 is achieved. �

Lemma 4.7. Assume that (Aσ), (F6) and (F7) are satisfied. Then there are
constants ρ > 0 and δ > 0 such that

Φ|S ≥ δ,

where

S =
{
u ∈ E+ : ‖u‖ = ρ

}
.



154 M. TIMOUMI

Proof. By (F7), for all ε > 0, there exists ν > 0 such that

|f(x, u)| ≤ ε |u| , ∀x ∈ R, ∀ |u| ≤ ν,
which with (F6) and the Mean Value Theorem gives

F (x, u) =

∫ 1

0

f(x, su)uds ≤ ε

2
|u|2 , ∀x ∈ R, ∀ |u| ≤ ν.

Choose ε = (2η2
2)−1 and take ρ = ν

η∞
, δ = ρ2

4 . By (2.4), we get

Φ(u) ≥ 1

2
‖u‖2 − ε

2

∫
R
|u(x)|2 dx =

1

4
‖u‖2 =

ρ2

4
= δ

for all u ∈ S. The proof of Lemma 4.7 is completed. �

Proof of Theorem 4.1

Lemma 4.8. Assume that (Aσ), (F5), (F6) and (F9) are satisfied. Let e ∈ E+

with ‖e‖ = 1. Then there exist r1, r2 > 0 such that

Φ(u) ≤ 0, ∀u ∈ ∂Λ

where
Λ = {se : 0 ≤ s ≤ r1} ⊕

{
u ∈ E− ⊕ E0 : ‖u‖ ≤ r2

}
.

Proof. Let e ∈ E+ with ‖e‖ = 1 and F = span {e} ⊕ E− ⊕ E0. By the proof
of Lemma 3.4, there exists a constant ε0 > 0 such that

(4.11) meas({x ∈ R : |u(x)| ≥ ε0 ‖u‖}) ≥ ε0, ∀u ∈ F \ {0} .
For u = u− + u0 + u+ ∈ F , let

Ωu = {x ∈ R : |u(x)| ≥ ε0 ‖u‖} .
By (F5), for d = 1

2ε30
> 0, there exists R1 > 0 such that

F (x, u) ≥ d |u|2 , ∀x ∈ R, ∀ |u| ≥ R1.

Hence one has

(4.12) F (x, u(x)) ≥ d |u(x)|2 ≥ dε20 ‖u‖
2

for all u ∈ F with ‖u‖ ≥ R1

ε0
and x ∈ Ωu. It follows from (F9), (4.11) and

(4.12) that

(4.13)

Φ(u) ≤ 1

2

∥∥u+
∥∥2 −

∫
Ωu

F (x, u(x))dx

≤ 1

2

∥∥u+
∥∥2 − dε20 ‖u‖

2
meas(Ωu)

≤ 1

2

∥∥u+
∥∥2 − 1

2
‖u‖2 ≤ 0

for all u ∈ F with ‖u‖ ≥ R1

ε0
. Let r1 > 0 and denote

Λ = {se : 0 ≤ s ≤ r1} ⊕
{
u ∈ E− ⊕ E0 : ‖u‖ ≤ r1

}
.
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Then we have

∂Λ = Λ1 ∪ Λ2 ∪ Λ3,

where

Λ1 =
{
u ∈ E− ⊕ E0 : ‖u‖ ≤ r1

}
,

Λ2 = r1e+
{
u ∈ E− ⊕ E0 : ‖u‖ ≤ r1

}
,

Λ3 = {se : 0 ≤ s ≤ r1} ⊕
{
u ∈ E− ⊕ E0 : ‖u‖ = r1

}
.

By (4.13), one has

Φ(u) ≤ 0, ∀u ∈ Λ2 ∪ Λ3

for all r1 ≥ R
ε0

. From (F6), we have

Φ(u) ≤ 0, ∀u ∈ E− ⊕ E0,

which implies that

Φ(u) ≤ 0, ∀u ∈ Λ1.

Hence we have

Φ(u) ≤ 0, ∀u ∈ ∂Λ,

for all r1 > max
{
ρ, R1

ε0

}
, where ρ is defined in Lemma 4.7, which completes

the proof of Lemma 4.8. �

By Lemma 4.4, Φ has a critical point u satisfying Φ(u) ≥ δ > 0 where δ is
given by Lemma 4.8. Since Φ(0) = 0, then u is nontrivial and (F) possesses a
nontrivial homoclinic solution. The proof of Theorem 4.1 is achieved.

Proof of Theorem 4.2

We have Φ(0) = 0 and since F (x, u) is even with respect to the second
variable, then Φ is even. The assumptions (Φ1), (Φ2) are proved above. Let

us prove (Φ
′

3). Let Ẽ ⊂ E be a finite dimensional subspace of E, there exists

m ≥ 1 such that Ẽ ⊂ E− ⊕E0 ⊕ span {w1, . . . , wm} = Xm, where wk = ek̄+k,
k ≥ 1. Replacing the subspace F = span {e} ⊕ E− ⊕ E0, introduced in the
proof of Lemma 4.8, by the subspace Xm and following the same steps, we
obtain Rm > 0 such that

Φ(u) ≤ 1

2

∥∥u+
∥∥2 − 1

2
‖u‖2 ≤ 0, ∀u ∈ Xm, ‖u‖ ≥ Rm.

Hence (Φ
′

3) is verified. Therefore, by Lemma 4.5, Φ possesses an unbounded
sequence of critical points. Hence (F) possesses infinitely may homoclinic so-
lutions. The proof of Theorem 4.2 is completed.
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5. Local conditions

In this Section, we are interested in a general case where the potential F (x, u)
satisfies only locally conditions near the origin with respect to u and do not
satisfy any additional hypotheses at infinity. More precisely, we present the
following assumptions:

(F10) There exist constants r, c > 0 and ν ∈]0, 1[ such that

|f(x, u)| ≤ c |u|ν , ∀x ∈ R, |u| ≤ r;

(F11) There exists ρ ∈]0, r] such that

F (x,−u) = F (x, u), and F (x, u) ≥ 0, ∀x ∈ R |u| ≤ ρ;

(F12) lim|u|→0
|F (x,u)|
|u|2 = +∞, uniformly for all x ∈ R.

Our main result in this Section reads as follows.

Theorem 5.1. Assume that (Aσ) and (F10)-(F12) are satisfied. Then (F)
possesses infinitely many nontrivial homoclinic orbits (uk) such that

Φ(uk) =
1

2

∫
R
[u
′′

k(x)2 − ωu
′

k(x)2 + a(x)uk(x)2]dx−
∫
R
F (t, uk(x))dx→ 0

as k →∞.

In the following, we give some examples which satisfy our assumptions.

Example 5.2 (The subquadratic case at infinity). Let

F (x, u) = h(x) |u|θ ln(1 + |u|2),

where (x, u) ∈ R2, θ ∈]1, 2[ and h ∈ C(R,R) with 0 < infx∈R h(x) ≤ supx∈R h(x)
<∞. It is easy to see that F (x, u) satisfies the conditions (F10)-(F12) and the
subquadratic condition at infinity, i.e.,

lim
|u|→∞

F (x, u)

|u|2
= 0.

Example 5.3 (The superquadratic case at infinity). Let

F (x, u) = h(x)(|u|ν + |u|θ ln(1 + |u|2))

where (x, u) ∈ R×R, θ ∈]1, 2[, ν ∈]2,∞[ and h ∈ C(R,R) with 0 < infx∈R h(x)
≤ supx∈R h(x) <∞. It is easy to see that F (x, u) satisfy the conditions (F10)-
(F12) and the superquadratic condition at infinity, i.e.,

lim
|u|→∞

F (x, u)

|u|2
= +∞.

Example 5.4 (The asymptotically quadratic case at infinity). Let

F (x, u) =
1

2
S(x)u2 + |u|θ ln(1 + |u|2),
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where S : R→ R is a continuous bounded function and θ ∈]1, 2[. It is clear that
F (x, u) is asymptotically quadratic at infinity with respect to u and satisfies
the conditions (F10)-(F12).

Proof of Theorem 5.1

Consider the continuously differentiable functional Φ : E → R introduced
in Section 3 whose critical points on E are the homoclinic solutions of the
equation (F).

We shall use the following Variant Symmetric Mountain Pass Lemma due
to Kajikiya [5] to prove our result. We will first recall the notion of genus.

Let E be a Banach space and let A be a subset of E. A is said to be
symmetric if u ∈ A implies −u ∈ A. For a closed symmetric set A which does
not contain the origin, we define the genus γ(A) of A by the smallest integer k
for which there exists an odd continuous mapping from A to Rk \ {0}. If such
a k does not exist, we define γ(A) = +∞. Moreover, we set γ(φ) = 0. Let

Γk = {A ⊂ E : A is a closed symmetric subset, 0 /∈ A, γ(A) ≥ k} .

The properties of genus used in the proof of our main result are summarized
as follows.

Lemma 5.5 ([5]). Let A and B be closed symmetric subsets of E that do not
contain the origin. Then the following hold.

a) If A ⊂ B, then γ(A) ≤ γ(B).
b) The n-dimensional sphere Sn has a genus of n + 1 by the Borsuk-Ulam

theorem.

Lemma 5.6 ([5]). Let E be an infinite-dimensional Banach space and Φ ∈
C1(E,R) satisfies the following.

(Φ1) Φ(0) = 0, Φ is even and bounded from below and Φ satisfies the (PS)-
condition;

(Φ2) For each k ∈ N, there exists Ak ⊂ Γk such that

sup
u∈Ak

Φ(u) < 0.

Then Φ possesses a sequence of critical points (uk) such that

Φ(uk) ≤ 0, uk 6= 0, ∀k ∈ N and lim
k→∞

uk = 0.

Now, let θ ∈ C1(R+,R+) satisfying

(5.1)

{
θ(s) = 1 for s ∈ [0, ρ

2η∞
], θ(s) = 0 for s ≥ ρ

η∞
,

θ′(s) < 0 for ρ
2η∞

< s < ρ
η∞
,

where ρ is defined in (F11). Consider the new functional ψ defined on E by

ψ(u) =
1

2
‖u‖2 − θ(‖u‖)

(∥∥u−∥∥2
+

1

2

∥∥u0
∥∥2

+

∫
R
F (x, u)dx

)
.
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Remark 5.7. It is clear that ψ ∈ C1(E,R), ψ(u) = Φ(u) for all ‖u‖ ≤ ρ
2η∞

and

thus critical points of ψ satisfying ‖u‖ ≤ ρ
2η∞

are exactly critical points of Φ.

Consequently, to prove our result, we will apply Lemma 5.6 to the functional
ψ instead of Φ.

Lemma 5.8. Assume that (Aσ), (F10) and (F11) are satisfied. Then ψ satisfies
the (PS)-condition.

Proof. Let (un) be a Palais-Smale sequence, that is (ψ(un)) is bounded and
ψ′(un) → 0 as n → ∞. If u ∈ E with ‖u‖ ≥ ρ

η∞
, then by the definition of θ

and ψ, we have

ψ(u) =
1

2
‖u‖2 ,

which implies that

(5.2) ψ(u)→ +∞ as ‖u‖ → ∞.

Since (ψ(un)) is bounded, then (5.2) implies that (un) is bounded. Thus,
passing to a subsequence if necessary, we can assume by Lemma 2.2 that un ⇀
u = u− + u0 + u+, u+

n ⇀ u+ and u+
n → u+ in L1(R). On the other hand,

if ‖un‖ ≥ ρ
η∞

, we have ψ′(un)un = ‖un‖2 ≥ ρ2

η2∞
contradicting the fact that

ψ′(un) → 0 as n → ∞. Hence, we can assume that ‖un‖ ≤ ρ
η∞

for all n ∈ N,

which with (2.4) implies that

|un(x)| ≤ ‖un‖L∞ ≤ η∞ ‖un‖ ≤ ρ.

This, jointly with (F10) implies that

(5.3)

∣∣∣∣∫
R
f(x, un)(u+

n − u+)dx

∣∣∣∣ ≤ ∫
R

∣∣f(x, un) ||u+
n − u+

∣∣ dx
≤ cρν

∫
R

∣∣u+
n − u+

∣∣ dx→ 0

as n→∞.
Now, we have

ψ′(un)(u+
n − u+)

= 〈un, u+
n−u+〉−θ′(‖un‖)〈

un
‖un‖

, u+
n−u+〉

(1

2

∥∥u0
n

∥∥2
+
∥∥u−n ∥∥2

+

∫
R
W (t, un)dx

)
− θ(‖un‖)

∫
R
f(x, un)(u+

n − u+)dx,

which with (5.3) and the fact that ψ′(un)→ 0 implies

(5.4)
[
1− θ′(‖un‖)

‖un‖

(1

2

∥∥u0
n

∥∥2
+
∥∥u−n ∥∥2

+

∫
R
W (t, un)dx

)]
〈un, u+

n − u+〉 → 0
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as n → ∞. Since ‖un‖ ≤ ρ
η∞

then |un(x)| ≤ ρ and F (x, un(x)) ≥ 0 for all

n ∈ N and x ∈ R by (F11). Hence, the definition of θ implies

1− θ′(‖un‖)
‖un‖

(1

2

∥∥u0
n

∥∥2
+
∥∥u−n ∥∥2

+

∫
R
F (x, un)dx

)
≥ 1, ∀n ∈ N.

It follows from (5.4) that

〈un, u+
n − u+〉 → 0 as n→∞.

By virtue of u+
n ⇀ u+, we have ‖u+

n ‖ → ‖u+‖ and then u+
n → u+.

Noting that E− and E0 are finite dimensional subspaces, so we have u−n →
u− and u0

n → u0. Therefore un → u in E and ψ satisfies the (PS)-condition.
The proof of Lemma 5.8 is completed. �

Now, the definitions of ψ and θ imply that ψ(u) = 1
2 ‖u‖

2
= ψ(−u) for

all ‖u‖ ≥ ρ
η∞

. If ‖u‖ ≤ ρ
η∞

, we have as above |u(x)| ≤ ρ for all x ∈ R,

which together with (F11) implies F (x,−u(x)) = F (x, u(x)) for all x ∈ R and
ψ(−u) = ψ(u). Thus ψ is even in E.

We claim that ψ is bounded from below. If not, there exists a sequence (un)
such that

(5.5) ψ(un)→ −∞ as n→∞.

By (F10), (F11) and the definitions of ψ and θ, it is easy to verify that ψ
maps bounded sets into bounded sets. It follows from (5.5) that ‖un‖ → ∞ as
n → ∞. Thus (5.2) implies that ψ(un) → +∞ as n → ∞, which contradicts
(5.5). Hence the condition (Φ1) of Lemma 5.6 is verified.

Finally, we show that ψ satisfies condition (Φ2) of Lemma 5.6. For any
positive integer k, let

Ek = ⊕km=1Xm, Xm = Rem,

where the sequence (em) is defined in Section 2. Since Ek is finite dimensional,
there exists a positive constant βk such that

(5.6) ‖u‖ ≤ βk ‖u‖L2 , ∀u ∈ Ek.

By (F12), there exists a constant R > 0 such that

(5.7) F (x, u) ≥ β2
k |u|

2
, ∀x ∈ R, |u| ≤ R.

Let u ∈ E such that ‖u‖ ≤ R
η∞

, we know that |u(x)| ≤ R for all x ∈ R, thus

by (5.7) we get

(5.8) F (x, u(x)) ≥ β2
k |u(x)|2 , ∀x ∈ R.

Therefore, by (5.6) and (5.8), for all u ∈ Ek with 0<‖u‖=rk ≤ min
{

ρ
2η∞

, R
η∞

}
,

we have

ψ(u) ≤ 1

2
‖u‖2 −

∫
R
β2
k |u(x)|2 dx− 1

2
‖u‖2 = −1

2
r2
k,
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which implies

(5.9) {u ∈ Ek \ {0} : ‖u‖ = rk} ⊂ Ak,

where

Ak =

{
u ∈ E : ψ(u) ≤ −1

2
η2
k

}
.

Thus Lemma 5.5 and (5.9) imply

γ(Ak) ≥ γ
(
{u ∈ Ek \ {0} : ‖u‖ = rk}

)
≥ k

hence, by the definition of Γk, we have Ak ⊂ Γk. Moreover, the definition of
Ak implies

sup
u∈Ak

ψ(u) ≤ −1

2
η2
k < 0.

All the conditions of Lemma 5.6 hold and the proof of Theorem 5.1 is finished
by this lemma.
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