Browse > Article
http://dx.doi.org/10.5012/bkcs.2003.24.6.763

The Potential Energy Surface of BH5 and the Rate of the Hydrogen Scrambling  

Kim, Kyung-Hyun (Department of Chemistry and Institute of Natural Sciences, Kyung Hee University)
Kim, Yong-Ho (Department of Chemistry and Institute of Natural Sciences, Kyung Hee University)
Publication Information
Abstract
The $BH_5$ molecule, which is suggested as an intermediate of the acidolysis of $BH_4^-$, contains a weak two-electron-three-center bond and it requires extremely high-level of theories to calculate the energy and structure correctly. The structures and energies of $BH_5$ and the transition state for the hydrogen scrambling have been studied using recently developed multi-coefficient correlated quantum mechanical methods (MCCMs). The dissociation energies and the barrier heights agree very well with the previous results at the CCSD(T)/ TZ(3d1f1g, 2p1d) level. We have also calculated the potential energy curves for the dissociation of $BH_5$ to $BH_3$ and $H_2$. The lower levels of theory were unable to plot correct potential curves, whereas the MCCM methods give very good potential energy curves and requires much less computing resources than the CCSD(T)/ TZ(3d1f1g,2p1d) level. The potential energy of the $BH_5$ scrambling has been obtained by the multiconfiguration molecular mechanics algorithm (MCMM), and the rates are calculated using the variational transition state theory including multidimensional tunneling approximation. The rate constant at 300 K is 2.1 × $10^9s^{-1}$, and tunneling is very important.
Keywords
$BH_5$; Hydrogen scrambling; MCMM; Rate constant;
Citations & Related Records

Times Cited By Web Of Science : 2  (Related Records In Web of Science)
Times Cited By SCOPUS : 2
연도 인용수 순위
1 Fast, P. L.; Corchado, J. C.; Sanchez, M. L.; Truhlar, D. G. J. Phys.Chem. 1999, 103, 5129.   DOI   ScienceOn
2 Tratz, C. M.; Fast, P. L.; Truhlar, D. G. PhysChemComm. 1999, 2, 1.   DOI   ScienceOn
3 Stanton, J. F.; Lipscomb, W. N.; Bartlett, R. J. J. Am. Chem. Soc.1988, 111, 5273.
4 Well, A. N.; New, J. T.; Pitzer, K. S. J. Chem. Phys. 1064, 17, 1007.   DOI
5 Truhlar, D. G.; Garrett, B. C. J. Chim. Phys. 1987, 84, 365.
6 Ischtwan, J.; Collins, M. J. Chem. Phys. 1994, 100, 8080.   DOI   ScienceOn
7 Nguyen, K. A.; Rossi, I.; Truhlar, D. G. J. Chem. Phys. 1995, 5522.
8 Schreiner, P. R.; Schaefer, H. F.; Schleyer, P. R. J. Chem. Phys.1994, 101, 7625.   DOI   ScienceOn
9 Frisch, M. J.; Trucks, G. W.; Schlegel, H. B.; Scuseria, G. E.;Robb, M. A.; Cheeseman, J. R.; Zakrzewski, V. G.; Montgomery,J. A.; Stratmann, R. E.; Burant, J. C.; Dapprich, S.; Millam, J. M.;Daniels, A. D.; Kudin, K. N.; Strain, M. C.; Farkas, O.; Tomasi, J.;Barone, V.; Cossi, M.; Cammi, R.; Mennucci, B.; Pomelli, C.;Adamo, C.; Clifford, S.; Ochterski, J.; Petersson, G. A.; Ayala, P.Y.; Cui, Q.; Morokuma, K.; Malick, D. K.; Rabuck, A. D.;Raghavachari, K.; Foresman, J. B.; Cioslowski, J.; Ortiz, J. V.;Stefanov, B. B.; Liu, G.; Liashenko, A.; Piskorz, P.; Komaromi, I.;Gomperts, R.; Martin, R. L.; Fox, D. J.; Keith, T.; Al-Laham, M.A.; Peng, C. Y.; Nanayakkara, A.; Gonzalez, C.; Challacombe,M.; Gill, P. M. W.; Johnson, B. G.; Chen, W.; Wong, M. W.;Andres, J. L.; Head-Gordon, M.; Replogle, E. S.; Pople, J. A.Gaussian 98 Rev. A. 9; Gaussian, Inc.: Pittsburgh, PA, 1998.
10 Park, C.-Y.; Kim, Y.; Kim, Y. J. Chem. Phys. 2001, 115, 2926.   DOI   ScienceOn
11 Fast, P. L.; Sanchez, M. L.; Corchado, J. C.; Truhlar, D. G. J.Chem. Phys. 1999, 110, 11679.   DOI
12 Fast, P. L.; Truhlar, D. G. J. Phys. Chem. 2000, 104, 6111.   DOI   ScienceOn
13 Kim, Y.; Kim, Y. Chem. Phys. Lett. 2002, 362, 419.   DOI   ScienceOn
14 Kim, Y.; Corchado, J. C.; Villa, J.; Xing, J.; Truhlar, D. G. J.Chem. Phys. 2000, 112, 2718.   DOI   ScienceOn
15 Mesmer, R. E.; Jolly, W. L. Inorg. Chem. 1962, 1, 608.   DOI
16 Seo, Y.; Kim, Y.; Kim, Y. Chem. Phys. Lett. 2001, 340, 186.   DOI   ScienceOn
17 Fast, P. L.; Corchado, J. C.; Sanchez, M. L.; Truhlar, D. G. J. Phys.Chem. A 1999, 103, 3139.   DOI   ScienceOn
18 Truong, T. N.; Truhlar, D. G.; Baldridge, K. K.; Gordon, M. S.;Steckler, R. J. Chem. Phys. 1989, 90, 7137.   DOI
19 Rodgers, J. M.; Lynch, B. J.; Fast, P. L.; Chuang, Y.-Y.; Pu, J.;Truhlar, D. G. Multilevel-version 2.1.1; University of Minnesota:Minneapolis, MN, 2000.
20 Fast, P. L.; Sanchez, M. L.; Truhlar, D. G. Chem. Phys. Lett. 1999,306, 407.   DOI   ScienceOn
21 Truhlar, D. G.; Isaacson, A. D.; Garrett, B. C. In Theory ofChemical Reaction Dynamics; Baer, M., Ed.; CRC Press: BocaRaton, FL, 1985; Vol. 4; p 65.
22 Tague Jr., T. J.; Andrews, L. J. Am. Chem .Soc. 1994, 116, 4970.   DOI   ScienceOn
23 Kreevoy, M. M.; Hutchins, J. E. C. J. Am. Chem. Soc. 1972, 94, 6371.   DOI
24 Garrett, B. C.; Truhlar, D. G.; Grev, R. S.; Magnuson, A. W. J.Phys. Chem. 1980, 84, 1730.   DOI