• Title/Summary/Keyword: Variable Thickness

Search Result 659, Processing Time 0.027 seconds

Comparison of palatal bone thickness between 3D model and lateral cephalometric radiograph (성인 구개부 측모두부계측방사선 사진과 3D model의 골두께 비교)

  • Jang, Min-Guk;Lee, Jin-Woo;Cha, Kyung-Suk;Chung, Dong-Hwa;Lee, Sang-Min
    • The korean journal of orthodontics
    • /
    • v.41 no.5
    • /
    • pp.312-323
    • /
    • 2011
  • Objective: This study compared the bone thickness of the palate between lateral cephalogram and 3D model measurements. Methods: The subjects consisted of 30 adults (15 men,15 women) with a normal skeletal pattern and occlusion. The CT images were transformed to a 3D model, and were compared with the cephalometric image. Descriptive statistics for each variable were calculated. Results: In the 3D CT model, the mid-palatal area was the thickest part. It became thinner as the palate tapered laterally. In the male group, the thinnest portion was positioned 6 mm away from the mid-palate, while in the female group the thinnest portion was 8mm away from the mid-palate. Correlation analysis between the lateral cephalometric and 3D CT model revealed a significant correlation except in the mid palatal area and the area 2 mm lateral to the mid-palate in men, whereas there was a significant relationship in every area in the women. In both men and women, the highest correlation appeared in the area 8 mm lateral to the mid palate. Conclusions: Using regression analysis, an actual prediction of the bone thickness between the measured bone thickness of the lateral cephalometric radiograph and 3D model was made. This will provide useful information for mini-implant length selection when inserting into the palate.

A Study on the Effect of Large Coherent Structures to the Skin Friction by POD Analysis (적합직교분해(POD)기법을 사용한 난류 응집구조 거동에 관한 연구)

  • Shin, Seong-Yun;Jung, Kwang-Hyo;Kang, Yong-Duck;Suh, Sung-Bu;Kim, Jin;An, Nam-Hyun
    • Journal of the Society of Naval Architects of Korea
    • /
    • v.54 no.5
    • /
    • pp.406-414
    • /
    • 2017
  • An experimental study in a recirculating water channel was carried out to investigate the effect of large coherent structures to the skin friction on a flat plate. Particle Image Velocimetry (PIV) technique was used to quantify characteristic features of coherent structures growing to the boundary layer. In the PIV measurement, it is difficult to calculate the friction velocity near the wall region due to laser deflection and uncertainty so that Clauser fitting method at the logarithmic region was adopted to compute the friction velocity and compared with the one directly measured by the dynamometer. With changing the free-stream velocity from 0.5 m/s to 1.0 m/s, the activity of coherent structures in the logarithmic region was increased over three times in terms of Reynolds stress. The flow field was separated by Variable Interval Time Averaging (VITA) technique into the weak and the strong structure case depending on the existence large coherent structures in order to validate its effectiveness. The stream-wise velocity fluctuation was scanned through at the boundary thickness whether it had a large deviation from background flow. With coherent structures connected from near-wall to the boundary layer, mean wall shear stress was higher than that of weak structure case. Proper Orthogonal Decomposition (POD) analysis was also applied to compare the energy budget between them at each free-stream velocity.

Comparison of Flexural Strength of Three-Dimensional Printed Three-Unit Provisional Fixed Dental Prostheses according to Build Directions

  • Park, Sang-Mo;Park, Ji-Man;Kim, Seong-Kyun;Heo, Seong-Joo;Koak, Jai-Young
    • Journal of Korean Dental Science
    • /
    • v.12 no.1
    • /
    • pp.13-19
    • /
    • 2019
  • Purpose: The aim of this study was to compare the flexural strength of provisional fixed dental prostheses which was three-dimensional (3D) printed by several build directions. Materials and Methods: A metal jig with two abutment teeth and pontic space in the middle was fabricated. This jig was scanned with a desktop scanner and provisional restoration was designed on dental computer-aided design program. On the preprocessing software, the build angles of the restorations were arranged at $0^{\circ}$, $30^{\circ}$, $45^{\circ}$, $60^{\circ}$, and $90^{\circ}$ and support was added and resultant structure was sliced to a thickness of $100{\mu}m$. Processed restorations were printed with digital light processing type 3D printer using poly methyl meta acrylate-based resin. After washing and post-curing, compressive loading was applied at a speed of 1 mm/min on a metal jig fixed to a universal testing machine. The maximum pressure at which fracture occurred was measured. For the statistical analysis, build direction was set as the independent variable and fracture strength as the dependent variable. One-way analysis of variance and Tukey's post hoc analysis was conducted to compare fracture strength among groups (${\alpha}=0.05$). Result: The mean flexural strength of provisional restoration 3D printed with the build direction of $0^{\circ}$ was $1,053{\pm}168N$; it was $1,183{\pm}188N$ at $30^{\circ}$, $1,178{\pm}81N$ at $45^{\circ}$, $1,166{\pm}133N$ at $60^{\circ}$, and $949{\pm}170N$ at $90^{\circ}$. The group with a build direction of $90^{\circ}$ showed significantly lower flexural strength than other groups (P<0.05). The flexural strength was significantly higher when the build direction was $30^{\circ}$ than when it was $90^{\circ}$ (P<0.01). Conclusion: Among the build directions $0^{\circ}$, $30^{\circ}$, $45^{\circ}$, $60^{\circ}$, and $90^{\circ}$ set for 3D printing of fixed dental prosthesis, an orientation of $30^{\circ}$ is recommended as an effective build direction for 3D printing.

Fabrication of 3-Step Light Transmittance-variable Smart Windows based on λ/2 Retardation Film (λ/2 Retardation Film을 이용한 3단계 투과율 가변 스마트윈도우 제작)

  • Il-Gu Kim;Ho-Chang Yang;Young-Min Park;Yo-Han Suh;Young Kyu Hong;Seung Hyun Lee
    • Journal of the Microelectronics and Packaging Society
    • /
    • v.30 no.3
    • /
    • pp.78-82
    • /
    • 2023
  • A fabrication of smart windows with controllable visible light transmittance in three steps by using λ/2 retardation films based on a reactive mesogen (RM) material and polarizing films is demonstrated. The phase retardation films with a Δn·d value of λ/2 (λ: wavelength) convert the direction of a traveling light to the optical axis of the film symmetrically. In this work, the retardation characteristics according to the RM thickness were evaluated and henceλ/2 phase retardation film can be fabricated. The phase retardation film with Δn·d of 276.1 nm, which is close to λ/2 (=275 nm @550 nm), was fabricated. The light transmittance of a smart window with the structure of (polarizing film)/(glass)/(alignment layer)/(λ/2 retardation film) was measured in the transmission mode, half mode and blocking mode. The evaluation results show that the transmittance of the smart window can be controlled in three steps with 35.8%, 27.8%, and 18.2% at each mode, respectively. In addition, by fabricating a smart window with a size of 15×200 mm2, the feasibility of use in various fields such as buildings and automobiles was verified.

A Study on Construction Methods of Roller Compacted Concrete Pavement for Bike Roads (자전거도로용 롤러 전압 콘크리트 포장의 시공 방안 연구)

  • Lee, Chang-Ho;Kim, Young-Kyu;Kang, Jae-Gyu;Park, Cheol-Woo;Lee, Seung-Woo
    • International Journal of Highway Engineering
    • /
    • v.13 no.2
    • /
    • pp.103-114
    • /
    • 2011
  • Usage of bicycle has been supported the universal reduction of energy consumption and $CO_2$. For the same purpose, new constructions for long length bike roads are planned in Korea. Recently, laboratory tests of physical properties and resistance against environmental loading about optimum mix design of roller compacted concrete, that have advantages of high structural performance by cement hydration and aggregate interlocking, simple construction procedure and low construction cost, are performed for the effective construction of new bike roads. However, properties of roller compacted concrete had different results between laboratory and field tests since it had different compaction method. Also, construction method of roller compacted concrete are not defined for the application of bike roads since it had different demand performance such as thin pavement thickness, low strength and etc with road pavements. Thus, in this experimental research was launched to evaluate the core properties, visual inspection, compaction ratio, water content, thickness reduction rate of roller compaction, skid resistance and roughness by experimental construction about variable mix proportion and compaction method based on laboratory test results. And construction method of roller compacted concrete pavement were suggested for the application of bike roads.

Analysis about Flexural Strength of Steel Plate-Concrete Composite Beam using Folded Steel Plate (Cap) as Shear Connector (절곡 강판(Cap)을 전단연결재로 사용한 강판-콘크리트 합성보의 휨강도 분석)

  • Cho, Tae-Gu;Choi, Byong-Jeong
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.19 no.7
    • /
    • pp.481-492
    • /
    • 2018
  • The steel-plate concrete composite beam is composed of a steel plate, concrete and shear connector to combine two inhomogeneous materials. In general, the steel plate is assembled by welding an existing composite beam. In this study, the SPC beam was composed of folding steel plates and concrete, without a headed stud. The folding steel plate was assembled by a high strength bolt instead of welding. To improve the workability in a field construction, a hat-shaped cap was attached to the junction with a slab. Monotonic load testing under two points was conducted under displacement control mode to analyze the flexural strength of the SPC beam using a cap as the shear connector. Five specimens with shear connector types, protrusion length, and different thickness of steel plates were constructed and tested. The experimental results were analyzed through the relationship between the shear strength ratio and flexural strength in KBC 2009. The test results showed a shear strength ratio of more than 40 %. In the case of using a cap-like specimen as the shear connector, the flexural strength was 70% of the value calculated as a fully composite beam. In addition, the cap showed a smaller shear strength than the stud, but the cap served as a shear connection. When the thickness of the steel plate was taken as a variable, the steel plate exhibited a bending strength of approximately 70% compared to a fully formed steel plate, and exhibited similar deformation performance. Local buckling occurred due to incomplete composite behavior, but local buckling occurred at a 5% higher strength for a relatively thick steel plate. The buckling width also decreased by 15%.

Development of Microlens Array for Maskless Lithography Application (Maskless lithography 응용을 위한 마이크로렌즈 어레이 개발)

  • Nam, Min-Woo;Oh, Hae-Kwan;Kim, Geun-Young;Seo, Hyun-Woo;Wei, Chang-Hyun;Song, Yo-Tak;Yang, Sang-Sik;Lee, Kee-Keun
    • Journal of the Microelectronics and Packaging Society
    • /
    • v.16 no.4
    • /
    • pp.33-39
    • /
    • 2009
  • A microlens array (MLA) was developed based on the wet-etched quartz substrate and coating of UV adhesive on the substrate for maskless lithography application. The developed MLA has the focal length of ${\sim}45\;{\mu}m$ and the spot size of ${\sim}1\;{\mu}m$. The spot size of the focused beam passing through the MLA was detected by CCD camera, and its intensity was monitored by beam profiler. Uniform spots with nearly identical intensities were observed on the focal plane when a beam passes through the fabricated MLA. The focal length was varied depending on thickness of the coated UV adhesive. The thicker the thickness of the UV adhesive was, the shorter the focal length of the MLA was. With a general mask aligner, UV beam focusing was tested onto photoresist (PR). The beams were well focused onto PR when UV passes through the MLA. Depending on the variable distances from the MLA, beam sizes onto PR were controlled. Even at high temperature for a long time, the performances of the MLA were not changed.

  • PDF

Evaluation of the Energy Dissipation Capacity of an Unstiffened Extended End-plate Connection (비보강 확장단부판 접합부의 에너지소산능력 평가)

  • Lee, Soo Kueon;Yang, Jae Guen
    • Journal of Korean Society of Steel Construction
    • /
    • v.27 no.2
    • /
    • pp.243-250
    • /
    • 2015
  • An extended end-plate connection displays different behavioral properties and energy dissipation capacity based on the thickness and length of the end-plate comprising the connection in the form of a beam-to-column moment connection, the number and diameter of the high strength bolt, the gauge distance of the high strength bolt, and the size and length of the welds. Such extended end-plate is applied to beam-to-column connections in various geometric forms in the US and European regions. Currently in Korea, however, the extended end-plate beam-to-column connection is not actively applied due to the lack of proper design formulas, the evaluation of the energy dissipation capacity, and the provision of construction guidelines. Accordingly, this study was conducted to provide the basic data for the proposal of a prediction model of energy dissipation capacity by evaluating the energy dissipation capacity of unstiffened extended end-plate connections with relatively thin end plate thicknesses. To achieve this, a three-dimensional nonlinear finite element analysis has been conducted on unstiffened extended end-plate connections, with the thickness of the end plate as the set variable.

Effect of Asphalt Pavement Conditions on Tensile Adhesive Strength of Waterproofing System on Concrete Bridge Deck (아스팔트 포장 조건이 교면방수 시스템의 인장접착강도에 미치는 영향)

  • Lee, Byung-Duck;Park, Sung-Ki;Kim, Kwang-Woo
    • International Journal of Highway Engineering
    • /
    • v.5 no.2 s.16
    • /
    • pp.15-24
    • /
    • 2003
  • The performance of waterproofing system (WPS) is known to be a function of many complex interaction of material factors, design details, and the quality of construction, but it is mainly determined by the bond strength, which is measured by tensile adhesive strength (TAS) test. to the concrete bridge deck. In this research, eight waterproofing membranes were selected from commercial market and the tensile adhesive characteristics of the WPS on concrete bridge deck were investigated in view of various factor in asphalt pavement. The factors include type of asphalt mixture, pavement thickness, paving temperature and influence of wheel loading. TAS test of different asphalt pavement types showed that TAS of WPS under SMA (Stone Mastic Asphalt) pavement was greater than that under dense asphalt pavement. TAS of sheet membranes was improved as the compaction temperature of asphalt concrete increase, but TAS of liquid membranes were not. The influence of thickness of pavement val minimal with given laboratory test condition. TAS of sheet membranes after wheel tracking test were in the order of the sites under wheel path (UWP), before wheel tracking (BWT) and nearby wheel path (NWP). Since TAS of the same WPS of UWP was higher than TAS of BWT, wheel loading had function of pressing WPS resulting in higher adhesive strength. But liquid membranes were variable on types. The feature of detached interface after TAS test showed that sheet types were all detached in between deck concrete and WPS, and liquid types were detached in between asphalt pavement and WPS.

  • PDF

Estimation of Sensitivity Enhancements on Localized Surface Plasmon Resonance Sensor Using Dielectric Multilayer (유전체 다중층을 이용한 국소 표면 플라즈몬 공명 센서의 감도 향상에 관한 연구)

  • Ahn, Heesang;Kang, Tae Young;Oh, Jin-Woo;Kim, Kyujung
    • Korean Journal of Optics and Photonics
    • /
    • v.28 no.1
    • /
    • pp.28-32
    • /
    • 2017
  • In this research, we designed an LSPR sensor based on a thin-film multilayer comprising $TiO_2$ and $SiO_2$. The thickness of the overall substrate layer of the suggested multilayer LSPR sensor is limited to 100 nm, and the number of repeating $TiO_2$ and $SiO_2$ thin films is 1-4 within a limited thickness. Additionally, a nanowire structure with a gold thin film of 40 nm, height of 40 nm, period of 600 nm, and line width of 300 nm was formed on the multilayer. To design the variable wavelength-type SPR, the angle was fixed at $75^{\circ}$ and the wavelength was changed. We then simulated the system with the finite-element method (FEM) using Maxwell's equations. It was confirmed that the resonance wavelength became shorter as the number of multilayers increased when the refractive index was fixed. We found that the wavelength changes were more sensitive. However, no changes were observed when the number of the multilayers was three or higher.