DOI QR코드

DOI QR Code

Analysis about Flexural Strength of Steel Plate-Concrete Composite Beam using Folded Steel Plate (Cap) as Shear Connector

절곡 강판(Cap)을 전단연결재로 사용한 강판-콘크리트 합성보의 휨강도 분석

  • Cho, Tae-Gu (Department of Architectural Engineering, Kyonggi University Graduate School) ;
  • Choi, Byong-Jeong (Department of Architectural Engineering, Kyonggi University Graduate School)
  • 조태구 (경기대학교 일반대학원 건축공학과) ;
  • 최병정 (경기대학교 일반대학원 건축공학과)
  • Received : 2018.04.16
  • Accepted : 2018.07.06
  • Published : 2018.07.31

Abstract

The steel-plate concrete composite beam is composed of a steel plate, concrete and shear connector to combine two inhomogeneous materials. In general, the steel plate is assembled by welding an existing composite beam. In this study, the SPC beam was composed of folding steel plates and concrete, without a headed stud. The folding steel plate was assembled by a high strength bolt instead of welding. To improve the workability in a field construction, a hat-shaped cap was attached to the junction with a slab. Monotonic load testing under two points was conducted under displacement control mode to analyze the flexural strength of the SPC beam using a cap as the shear connector. Five specimens with shear connector types, protrusion length, and different thickness of steel plates were constructed and tested. The experimental results were analyzed through the relationship between the shear strength ratio and flexural strength in KBC 2009. The test results showed a shear strength ratio of more than 40 %. In the case of using a cap-like specimen as the shear connector, the flexural strength was 70% of the value calculated as a fully composite beam. In addition, the cap showed a smaller shear strength than the stud, but the cap served as a shear connection. When the thickness of the steel plate was taken as a variable, the steel plate exhibited a bending strength of approximately 70% compared to a fully formed steel plate, and exhibited similar deformation performance. Local buckling occurred due to incomplete composite behavior, but local buckling occurred at a 5% higher strength for a relatively thick steel plate. The buckling width also decreased by 15%.

본 강판 콘크리트 합성보는 강판, 콘크리트 및 전단 연결재로 구성되어 2개의 이질 재료를 결합한다. 일반적으로 강판은 기존의 합성보에 용접하여 조립된다. 이 연구에서, SPC 보는 스터드가 없는 강판과 콘크리트로 구성된다. 절곡한 강판은 용접 대신 고강도 볼트로 조립된다. 현장 건설의 작업성을 향상시키기 위해 슬래브와 접합부에 모자 모양의 Cap이 부착되어있다. Cap을 전단연결재로 사용하여 SPC 보의 휨성능을 분석하기 위해 변위 제어 모드에서 단조 하중 2점가력 실험을 수행 하였다. 전단 연결재 유형, 돌출 길이, 강판의 두께의 변수를 갖는 5개의 시험편을 제작하여 시험 하였다. KBC 2009에서 제시하는 전단강도비와 휨강도비의 관계를 분석하였다. 시험 결과로 전단 강도비를 40% 이상으로 나타냈다. 전단 연결재와 Cap을 부착하였음에도 완전합성보로 가정한 휨강도의 70% 이상의 휨강도를 발휘하였다. 또한 Cap이 스터드 보다는 작은 전단강도를 보였으나, Cap이 전단연결재 역할을 하였다. 강판두께를 변수로 한 경우, 완전합성보 대비 약 70%의 휨강도를 발휘하였으며, 유사한 변형성능을 나타내었다. 불완전합성거동함에 따라 국부좌굴이 발생하였으나, 상대적으로 두꺼운 강판의 경우 5% 높은 강도에서 국부좌굴이 발생하였다. 또한 좌굴폭이 15% 감소하였다.

Keywords

References

  1. Jae-Sub Lee, Bong-Ho Cho, Dae-Jin Kim, Young-Ho Kim, Flexural Performance of Composite Beam with Concrete-filled Tubular Flange, April, 2017. DOI: https://doi.org/10.3390/app7010057
  2. RIST, Composite slabs and beams using steel decking, Research institute of Industrial Science and Technology, Goomibook, 2011.
  3. Sung-Pil Chang, Chang-Su Shim, Composite structures, Goomibook, 2006.
  4. Sang-Seup Kim, Sang-Mo Kim, Sung-Bae Kim ,Dong-Gee Seo, yu-Suk Kim, An Experimental Study on the Behavior of the T-type Steel Composite Beam, Journal of Korean Society of Steel Construction, KSSC, Vol. 16, No. 2, pp.225-233, 2004. DOI: http://www.koreascience.or.kr/article/ArticleFull Record.jsp?cn=GGJHBP_2004_v16n2s69_225
  5. Byung-Wook Heo , Myong-Kwak Kwak, Kyu Woong Bae, Sang-Min Jung, Suk-Kuy Kang, Flexural Capacity of the Profiled Steel Composite Beams with Truss Deck Plate, Journal of Korean Society of Steel Construction, KSSC, Vol. 19, No. 4, pp.413-423, 2007. DOI: http://www.koreascience.or.kr/article/ArticleFull Record.jsp?cn=GGJHBP_2007_v19n4_413
  6. AIK, Korea building code and commentary-structural, Architectural Institute of Korea, 2009.
  7. KSSC, Standard of design of steel structure by load and resistance factor design method, Korean Society of Steel Construction, 2014.
  8. AISC, Steel Construction Manual, American Institute of Steel Construction, 2011.
  9. KSA, KS F 2405; Standard test method for compressive strength of concrete, Korean Industrial Standards, Korean Standards Association, 2001.
  10. KSA, KS B 0801; Test pieces for tensile test for metallic materials, Korean Industrial Standards, Korean Standards Association, 2007.
  11. William T. Segui, Steel Design (International Student Edition), Thomson, 2006.