Development of Microlens Array for Maskless Lithography Application

Maskless lithography 응용을 위한 마이크로렌즈 어레이 개발

  • Published : 2009.12.30

Abstract

A microlens array (MLA) was developed based on the wet-etched quartz substrate and coating of UV adhesive on the substrate for maskless lithography application. The developed MLA has the focal length of ${\sim}45\;{\mu}m$ and the spot size of ${\sim}1\;{\mu}m$. The spot size of the focused beam passing through the MLA was detected by CCD camera, and its intensity was monitored by beam profiler. Uniform spots with nearly identical intensities were observed on the focal plane when a beam passes through the fabricated MLA. The focal length was varied depending on thickness of the coated UV adhesive. The thicker the thickness of the UV adhesive was, the shorter the focal length of the MLA was. With a general mask aligner, UV beam focusing was tested onto photoresist (PR). The beams were well focused onto PR when UV passes through the MLA. Depending on the variable distances from the MLA, beam sizes onto PR were controlled. Even at high temperature for a long time, the performances of the MLA were not changed.

마스크리스 리소그래피(maskless lithography)에 응용하기 위한 마이크로렌즈 어레이(microlens array, MLA)가 석영의 습식 식각과 UV 접착제(UV adhesive)의 코팅을 바탕으로 개발되었다. 제작된 MLA의 초점거리는 ${\sim}45\;{\mu}m$ 정도였으며, 집광되는 광선의 초점은 ${\sim}1\;{\mu}m$로 측정되었다. MLA를 통과하며 초점을 맺은 빔(beam)의 크기 및 세기가 charge coupled device (CCD) 카메라와 빔 프로파일러(beam profiler)를 이용하여 각각 측정되었으며, 일정한 세기의 점들이 초점면에서 고르게 관찰되었다. 초점거리는 코팅된 UV 접착제의 두께에 따라 변화하였으며, UV 접착제의 두께가 두꺼울수록 짧아지는 경향을 보였다. 일반적인 마스크 얼라이너(mask aligner)를 이용한 MLA의 UV 포커싱(UV focusing)이 감광막(photoresist, PR) 상에서 실시되었으며, MLA를 통과한 빛이 감광막 위에 일정하게 집광되었다. 마스크 얼라이너와 MLA 사이의 거리 변화에 따라 감광막에 구현된 패턴 사이즈가 조절 되었다. 고온에서 오랜 시간이 지난 후에도 소자의 특성은 전혀 변함이 없었다.

Keywords

References

  1. M. He, X. C. Yuan, N. Q. Ngo and S. H. Tao, "Single Step Fabrication of a Microlens Array in Sol-gel Material by Direct Laser Writing and Its Application in Optical Coupling", J. Opt. A 6(1), 94-97 (2004). https://doi.org/10.1088/1464-4258/6/1/017
  2. H. Urey and K. D. Powell, "Microlens-array-based Exit-pupil Expander for Full-color Displays", Appl. Opt. 44(23), 4930-4936 (2005). https://doi.org/10.1364/AO.44.004930
  3. K. Kurihara, I. D. Nikolov, S. Mitsugi, K. Nanri and K. Goto, "Design and Fabrication of Microlens Array for Near-field Vertical Cavity Surface Emitting Laser Parallel Optical Head", Opt. Rev. 10(2), 89-95 (2003). https://doi.org/10.1007/s10043-003-0089-5
  4. L. Erdmann and K. J. Gabriel, "High-Resolution Digital Integral Photography by use of a Scanning Microlens Array", Appl. Opt. 40(31), 5592-5599 (2001). https://doi.org/10.1364/AO.40.005592
  5. M. He, X. C. Yuan, N. Q. Ngo, J. Bu and V. Kudryashov, "Simple Reflow Technique for Fabrication of a Microlens Array in Solgel Glass", Opt. Lett. 28(9), 731-733 (2003). https://doi.org/10.1364/OL.28.000731
  6. J. B. Orhan, V. K. Parashar, A. Sayah and M. Gijs, "Fabrication and Characterization of Three-Dimensional Microlens Arrays in Sol-gel Glass", J. Microelectromech.. Syst. 15(5), 1159-1164 (2006). https://doi.org/10.1109/JMEMS.2006.879696
  7. Y. Shen, "A Novel Fabrication Method for the Mold Insert of Microlens Arrays by Hot Embossing Molding", Polym. Eng. Sci. 46(12), 1797-1803 (2006). https://doi.org/10.1002/pen.20654
  8. D. L. Macfarlane, V. Narayan, J. A. Tatum, W. R. Cox, T. Chen and D. J. Hayes, "Microjet Fabrication of Microlens Arrays", IEEE Photon. Technol. Lett. 6(9), 1112-1114 (1994). https://doi.org/10.1109/68.324684
  9. X. Yuan, W. Yu, N. Ngo and W. Cheong, "Cost-effective Fab-rication of Microlenses on Hybrid Sol-gel Glass with a Highenergy Beam-sensitive Gray-scale Mask", Opt. Express 10(7), 303-308 (2002). https://doi.org/10.1364/OE.10.000303
  10. M. Wakaki, Y. Komachi and G. Kanai, "Microlens and Microlens Arrays Formed on a Glass Plate by use of a CO2 Laser", Appl. Opt. 37(4), 627-631 (1998). https://doi.org/10.1364/AO.37.000627
  11. T. Shih, C. Chen, J. Ho and F. Chuang, "Fabrication of PDMS (polydimethylsiloxane) Microlens and Diffuser Using Replica Molding", Microelectron. Eng. 83(11-12), 2499-2503 (2006). https://doi.org/10.1016/j.mee.2006.05.006
  12. C. Lee and C. Han, "A Novel Refractive Silicon Microlens Array using Bulk Micromachining Technology", Sensors and Actuators A 88(1), 87-90 (2001). https://doi.org/10.1016/S0924-4247(00)00493-3
  13. S. Lee, M. Kim, K. Jo, S. Shin and J. Lee, "A Glass Reflowed Microlens Array on a Si Substrate with Rectangular Throughholes", J. Opt. A, 10(4), 044003 (2008). https://doi.org/10.1088/1464-4258/10/4/044003
  14. E. Gu, H. Choi, C. Liu, C. Griffin, J. Girkin, I. Watson, M. Dawson, G. McConnell and A. M. Gurney, "Reflection/Transmission Confocal Microscopy Characterization of Singlecrystal Diamond Microlens Arrays", Appl. Phys. Lett. 84, 2754-2756 (2004). https://doi.org/10.1063/1.1695101
  15. S. M. Kuo and C. H. Li, "The Fabrication of Non-spherical Microlens Arrays Utilizing a Novel SU-8 Stamping Method", J. Microelectromech. Syst. 18(12), 125012 (2008).
  16. M. H. Freeman, "Optics", 10th ED., Butterworths Heinemann, London (1990).
  17. K. Moon, S. Shin, I. Park, H. Lee, H. Cha and J. Ahn, "UVnanoimprint Patterning Without Residual Layers Using UVblocking Metal Layer", J. Microelectron. Packag. Soc. 12(4), 275-280 (2005).
  18. M. Nam, C. Lim and K. Lee, "Removal of Residual Stress and In-vitro Recording Test in Polymer-based 3D Neural Probe", J. Microelectron. Packag. Soc. 16(2), 33-42 (2009).